![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bccl2d | Structured version Visualization version GIF version |
Description: Closure of the binomial coefficient, a deduction version. (Contributed by metakunt, 12-May-2024.) |
Ref | Expression |
---|---|
bccl2d.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
bccl2d.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
bccl2d.3 | ⊢ (𝜑 → 𝐾 ≤ 𝑁) |
Ref | Expression |
---|---|
bccl2d | ⊢ (𝜑 → (𝑁C𝐾) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bccl2d.2 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
2 | 1 | nn0zd 12585 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
3 | 1 | nn0ge0d 12536 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝐾) |
4 | bccl2d.3 | . . . 4 ⊢ (𝜑 → 𝐾 ≤ 𝑁) | |
5 | 2, 3, 4 | 3jca 1125 | . . 3 ⊢ (𝜑 → (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) |
6 | bccl2d.1 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
7 | 6 | nnzd 12586 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
8 | 0z 12570 | . . . . 5 ⊢ 0 ∈ ℤ | |
9 | elfz1 13492 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
10 | 8, 9 | mpan 687 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
12 | 5, 11 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐾 ∈ (0...𝑁)) |
13 | bccl2 14286 | . 2 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℕ) | |
14 | 12, 13 | syl 17 | 1 ⊢ (𝜑 → (𝑁C𝐾) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 ∈ wcel 2098 class class class wbr 5141 (class class class)co 7404 0cc0 11109 ≤ cle 11250 ℕcn 12213 ℕ0cn0 12473 ℤcz 12559 ...cfz 13487 Ccbc 14265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-fz 13488 df-seq 13970 df-fac 14237 df-bc 14266 |
This theorem is referenced by: lcmineqlem11 41418 lcmineqlem15 41422 lcmineqlem16 41423 lcmineqlem19 41426 lcmineqlem20 41427 |
Copyright terms: Public domain | W3C validator |