Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem25 Structured version   Visualization version   GIF version

Theorem lcfrlem25 41586
Description: Lemma for lcfr 41604. Special case of lcfrlem35 41596 when ((𝐽𝑌)‘𝐼) is zero. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem24.t · = ( ·𝑠𝑈)
lcfrlem24.s 𝑆 = (Scalar‘𝑈)
lcfrlem24.q 𝑄 = (0g𝑆)
lcfrlem24.r 𝑅 = (Base‘𝑆)
lcfrlem24.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcfrlem24.ib (𝜑𝐼𝐵)
lcfrlem24.l 𝐿 = (LKer‘𝑈)
lcfrlem25.d 𝐷 = (LDual‘𝑈)
lcfrlem25.jz (𝜑 → ((𝐽𝑌)‘𝐼) = 𝑄)
lcfrlem25.in (𝜑𝐼0 )
Assertion
Ref Expression
lcfrlem25 (𝜑 → ( ‘{(𝑋 + 𝑌)}) = (𝐿‘(𝐽𝑌)))
Distinct variable groups:   𝑣,𝑘,𝑤,𝑥,   + ,𝑘,𝑣,𝑤,𝑥   𝑅,𝑘,𝑣,𝑥   𝑆,𝑘   · ,𝑘,𝑣,𝑤,𝑥   𝑣,𝑉,𝑥   𝑘,𝑋,𝑣,𝑤,𝑥   𝑘,𝑌,𝑣,𝑤,𝑥   𝑥, 0
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑘)   𝐴(𝑥,𝑤,𝑣,𝑘)   𝐵(𝑥,𝑤,𝑣,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑥,𝑤,𝑣)   𝑈(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑘)   𝑁(𝑥,𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑘)   0 (𝑤,𝑣,𝑘)

Proof of Theorem lcfrlem25
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lcfrlem17.h . . . 4 𝐻 = (LHyp‘𝐾)
2 lcfrlem17.o . . . 4 = ((ocH‘𝐾)‘𝑊)
3 lcfrlem17.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfrlem17.v . . . 4 𝑉 = (Base‘𝑈)
5 lcfrlem17.p . . . 4 + = (+g𝑈)
6 lcfrlem17.z . . . 4 0 = (0g𝑈)
7 lcfrlem17.n . . . 4 𝑁 = (LSpan‘𝑈)
8 lcfrlem17.a . . . 4 𝐴 = (LSAtoms‘𝑈)
9 lcfrlem17.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 lcfrlem17.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
11 lcfrlem17.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
12 lcfrlem17.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
13 lcfrlem22.b . . . 4 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
14 eqid 2735 . . . 4 (LSSum‘𝑈) = (LSSum‘𝑈)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14lcfrlem23 41584 . . 3 (𝜑 → (( ‘{𝑋, 𝑌})(LSSum‘𝑈)𝐵) = ( ‘{(𝑋 + 𝑌)}))
16 lcfrlem24.t . . . . . 6 · = ( ·𝑠𝑈)
17 lcfrlem24.s . . . . . 6 𝑆 = (Scalar‘𝑈)
18 lcfrlem24.q . . . . . 6 𝑄 = (0g𝑆)
19 lcfrlem24.r . . . . . 6 𝑅 = (Base‘𝑆)
20 lcfrlem24.j . . . . . 6 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
21 lcfrlem24.ib . . . . . 6 (𝜑𝐼𝐵)
22 lcfrlem24.l . . . . . 6 𝐿 = (LKer‘𝑈)
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22lcfrlem24 41585 . . . . 5 (𝜑 → ( ‘{𝑋, 𝑌}) = ((𝐿‘(𝐽𝑋)) ∩ (𝐿‘(𝐽𝑌))))
24 inss2 4213 . . . . 5 ((𝐿‘(𝐽𝑋)) ∩ (𝐿‘(𝐽𝑌))) ⊆ (𝐿‘(𝐽𝑌))
2523, 24eqsstrdi 4003 . . . 4 (𝜑 → ( ‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐽𝑌)))
261, 3, 9dvhlvec 41128 . . . . . 6 (𝜑𝑈 ∈ LVec)
271, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13lcfrlem22 41583 . . . . . 6 (𝜑𝐵𝐴)
28 lcfrlem25.in . . . . . 6 (𝜑𝐼0 )
296, 7, 8, 26, 27, 21, 28lsatel 39023 . . . . 5 (𝜑𝐵 = (𝑁‘{𝐼}))
30 eqid 2735 . . . . . 6 (LSubSp‘𝑈) = (LSubSp‘𝑈)
311, 3, 9dvhlmod 41129 . . . . . 6 (𝜑𝑈 ∈ LMod)
32 eqid 2735 . . . . . . . 8 (LFnl‘𝑈) = (LFnl‘𝑈)
33 lcfrlem25.d . . . . . . . 8 𝐷 = (LDual‘𝑈)
34 eqid 2735 . . . . . . . 8 (0g𝐷) = (0g𝐷)
35 eqid 2735 . . . . . . . 8 {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
361, 2, 3, 4, 5, 16, 17, 19, 6, 32, 22, 33, 34, 35, 20, 9, 11lcfrlem10 41571 . . . . . . 7 (𝜑 → (𝐽𝑌) ∈ (LFnl‘𝑈))
3732, 22, 30lkrlss 39113 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝐽𝑌) ∈ (LFnl‘𝑈)) → (𝐿‘(𝐽𝑌)) ∈ (LSubSp‘𝑈))
3831, 36, 37syl2anc 584 . . . . . 6 (𝜑 → (𝐿‘(𝐽𝑌)) ∈ (LSubSp‘𝑈))
39 lcfrlem25.jz . . . . . . 7 (𝜑 → ((𝐽𝑌)‘𝐼) = 𝑄)
404, 8, 31, 27lsatssv 39016 . . . . . . . . 9 (𝜑𝐵𝑉)
4140, 21sseldd 3959 . . . . . . . 8 (𝜑𝐼𝑉)
424, 17, 18, 32, 22, 31, 36, 41ellkr2 39109 . . . . . . 7 (𝜑 → (𝐼 ∈ (𝐿‘(𝐽𝑌)) ↔ ((𝐽𝑌)‘𝐼) = 𝑄))
4339, 42mpbird 257 . . . . . 6 (𝜑𝐼 ∈ (𝐿‘(𝐽𝑌)))
4430, 7, 31, 38, 43ellspsn5 20953 . . . . 5 (𝜑 → (𝑁‘{𝐼}) ⊆ (𝐿‘(𝐽𝑌)))
4529, 44eqsstrd 3993 . . . 4 (𝜑𝐵 ⊆ (𝐿‘(𝐽𝑌)))
4630lsssssubg 20915 . . . . . . 7 (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
4731, 46syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
4810eldifad 3938 . . . . . . . 8 (𝜑𝑋𝑉)
4911eldifad 3938 . . . . . . . 8 (𝜑𝑌𝑉)
50 prssi 4797 . . . . . . . 8 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
5148, 49, 50syl2anc 584 . . . . . . 7 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
521, 3, 4, 30, 2dochlss 41373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝑋, 𝑌} ⊆ 𝑉) → ( ‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
539, 51, 52syl2anc 584 . . . . . 6 (𝜑 → ( ‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
5447, 53sseldd 3959 . . . . 5 (𝜑 → ( ‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑈))
554, 30, 7, 31, 48, 49lspprcl 20935 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12lcfrlem17 41578 . . . . . . . . . . 11 (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }))
5756eldifad 3938 . . . . . . . . . 10 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
5857snssd 4785 . . . . . . . . 9 (𝜑 → {(𝑋 + 𝑌)} ⊆ 𝑉)
591, 3, 4, 30, 2dochlss 41373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {(𝑋 + 𝑌)} ⊆ 𝑉) → ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
609, 58, 59syl2anc 584 . . . . . . . 8 (𝜑 → ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
6130lssincl 20922 . . . . . . . 8 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈) ∧ ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∈ (LSubSp‘𝑈))
6231, 55, 60, 61syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∈ (LSubSp‘𝑈))
6313, 62eqeltrid 2838 . . . . . 6 (𝜑𝐵 ∈ (LSubSp‘𝑈))
6447, 63sseldd 3959 . . . . 5 (𝜑𝐵 ∈ (SubGrp‘𝑈))
6547, 38sseldd 3959 . . . . 5 (𝜑 → (𝐿‘(𝐽𝑌)) ∈ (SubGrp‘𝑈))
6614lsmlub 19645 . . . . 5 ((( ‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑈) ∧ 𝐵 ∈ (SubGrp‘𝑈) ∧ (𝐿‘(𝐽𝑌)) ∈ (SubGrp‘𝑈)) → ((( ‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐽𝑌)) ∧ 𝐵 ⊆ (𝐿‘(𝐽𝑌))) ↔ (( ‘{𝑋, 𝑌})(LSSum‘𝑈)𝐵) ⊆ (𝐿‘(𝐽𝑌))))
6754, 64, 65, 66syl3anc 1373 . . . 4 (𝜑 → ((( ‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐽𝑌)) ∧ 𝐵 ⊆ (𝐿‘(𝐽𝑌))) ↔ (( ‘{𝑋, 𝑌})(LSSum‘𝑈)𝐵) ⊆ (𝐿‘(𝐽𝑌))))
6825, 45, 67mpbi2and 712 . . 3 (𝜑 → (( ‘{𝑋, 𝑌})(LSSum‘𝑈)𝐵) ⊆ (𝐿‘(𝐽𝑌)))
6915, 68eqsstrrd 3994 . 2 (𝜑 → ( ‘{(𝑋 + 𝑌)}) ⊆ (𝐿‘(𝐽𝑌)))
70 eqid 2735 . . 3 (LSHyp‘𝑈) = (LSHyp‘𝑈)
711, 2, 3, 4, 6, 70, 9, 56dochsnshp 41472 . . 3 (𝜑 → ( ‘{(𝑋 + 𝑌)}) ∈ (LSHyp‘𝑈))
721, 2, 3, 4, 5, 16, 17, 19, 6, 32, 22, 33, 34, 35, 20, 9, 11lcfrlem13 41574 . . . . 5 (𝜑 → (𝐽𝑌) ∈ ({𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} ∖ {(0g𝐷)}))
73 eldifsni 4766 . . . . 5 ((𝐽𝑌) ∈ ({𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} ∖ {(0g𝐷)}) → (𝐽𝑌) ≠ (0g𝐷))
7472, 73syl 17 . . . 4 (𝜑 → (𝐽𝑌) ≠ (0g𝐷))
7570, 32, 22, 33, 34, 26, 36lduallkr3 39180 . . . 4 (𝜑 → ((𝐿‘(𝐽𝑌)) ∈ (LSHyp‘𝑈) ↔ (𝐽𝑌) ≠ (0g𝐷)))
7674, 75mpbird 257 . . 3 (𝜑 → (𝐿‘(𝐽𝑌)) ∈ (LSHyp‘𝑈))
7770, 26, 71, 76lshpcmp 39006 . 2 (𝜑 → (( ‘{(𝑋 + 𝑌)}) ⊆ (𝐿‘(𝐽𝑌)) ↔ ( ‘{(𝑋 + 𝑌)}) = (𝐿‘(𝐽𝑌))))
7869, 77mpbid 232 1 (𝜑 → ( ‘{(𝑋 + 𝑌)}) = (𝐿‘(𝐽𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wrex 3060  {crab 3415  cdif 3923  cin 3925  wss 3926  {csn 4601  {cpr 4603  cmpt 5201  cfv 6531  crio 7361  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  SubGrpcsubg 19103  LSSumclsm 19615  LModclmod 20817  LSubSpclss 20888  LSpanclspn 20928  LSAtomsclsa 38992  LSHypclsh 38993  LFnlclfn 39075  LKerclk 39103  LDualcld 39141  HLchlt 39368  LHypclh 40003  DVecHcdvh 41097  ocHcoch 41366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-undef 8272  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-0g 17455  df-mre 17598  df-mrc 17599  df-acs 17601  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cntz 19300  df-oppg 19329  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lvec 21061  df-lsatoms 38994  df-lshyp 38995  df-lcv 39037  df-lfl 39076  df-lkr 39104  df-ldual 39142  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519  df-lines 39520  df-psubsp 39522  df-pmap 39523  df-padd 39815  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178  df-tgrp 40762  df-tendo 40774  df-edring 40776  df-dveca 41022  df-disoa 41048  df-dvech 41098  df-dib 41158  df-dic 41192  df-dih 41248  df-doch 41367  df-djh 41414
This theorem is referenced by:  lcfrlem26  41587
  Copyright terms: Public domain W3C validator