Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem25 Structured version   Visualization version   GIF version

Theorem lcfrlem25 37726
Description: Lemma for lcfr 37744. Special case of lcfrlem35 37736 when ((𝐽𝑌)‘𝐼) is zero. (Contributed by NM, 11-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h 𝐻 = (LHyp‘𝐾)
lcfrlem17.o = ((ocH‘𝐾)‘𝑊)
lcfrlem17.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfrlem17.v 𝑉 = (Base‘𝑈)
lcfrlem17.p + = (+g𝑈)
lcfrlem17.z 0 = (0g𝑈)
lcfrlem17.n 𝑁 = (LSpan‘𝑈)
lcfrlem17.a 𝐴 = (LSAtoms‘𝑈)
lcfrlem17.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfrlem17.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
lcfrlem17.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
lcfrlem22.b 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
lcfrlem24.t · = ( ·𝑠𝑈)
lcfrlem24.s 𝑆 = (Scalar‘𝑈)
lcfrlem24.q 𝑄 = (0g𝑆)
lcfrlem24.r 𝑅 = (Base‘𝑆)
lcfrlem24.j 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
lcfrlem24.ib (𝜑𝐼𝐵)
lcfrlem24.l 𝐿 = (LKer‘𝑈)
lcfrlem25.d 𝐷 = (LDual‘𝑈)
lcfrlem25.jz (𝜑 → ((𝐽𝑌)‘𝐼) = 𝑄)
lcfrlem25.in (𝜑𝐼0 )
Assertion
Ref Expression
lcfrlem25 (𝜑 → ( ‘{(𝑋 + 𝑌)}) = (𝐿‘(𝐽𝑌)))
Distinct variable groups:   𝑣,𝑘,𝑤,𝑥,   + ,𝑘,𝑣,𝑤,𝑥   𝑅,𝑘,𝑣,𝑥   𝑆,𝑘   · ,𝑘,𝑣,𝑤,𝑥   𝑣,𝑉,𝑥   𝑘,𝑋,𝑣,𝑤,𝑥   𝑘,𝑌,𝑣,𝑤,𝑥   𝑥, 0
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑘)   𝐴(𝑥,𝑤,𝑣,𝑘)   𝐵(𝑥,𝑤,𝑣,𝑘)   𝐷(𝑥,𝑤,𝑣,𝑘)   𝑄(𝑥,𝑤,𝑣,𝑘)   𝑅(𝑤)   𝑆(𝑥,𝑤,𝑣)   𝑈(𝑥,𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑘)   𝐼(𝑥,𝑤,𝑣,𝑘)   𝐽(𝑥,𝑤,𝑣,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑘)   𝐿(𝑥,𝑤,𝑣,𝑘)   𝑁(𝑥,𝑤,𝑣,𝑘)   𝑉(𝑤,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑘)   0 (𝑤,𝑣,𝑘)

Proof of Theorem lcfrlem25
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lcfrlem17.h . . . 4 𝐻 = (LHyp‘𝐾)
2 lcfrlem17.o . . . 4 = ((ocH‘𝐾)‘𝑊)
3 lcfrlem17.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 lcfrlem17.v . . . 4 𝑉 = (Base‘𝑈)
5 lcfrlem17.p . . . 4 + = (+g𝑈)
6 lcfrlem17.z . . . 4 0 = (0g𝑈)
7 lcfrlem17.n . . . 4 𝑁 = (LSpan‘𝑈)
8 lcfrlem17.a . . . 4 𝐴 = (LSAtoms‘𝑈)
9 lcfrlem17.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 lcfrlem17.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
11 lcfrlem17.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
12 lcfrlem17.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
13 lcfrlem22.b . . . 4 𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))
14 eqid 2778 . . . 4 (LSSum‘𝑈) = (LSSum‘𝑈)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14lcfrlem23 37724 . . 3 (𝜑 → (( ‘{𝑋, 𝑌})(LSSum‘𝑈)𝐵) = ( ‘{(𝑋 + 𝑌)}))
16 lcfrlem24.t . . . . . 6 · = ( ·𝑠𝑈)
17 lcfrlem24.s . . . . . 6 𝑆 = (Scalar‘𝑈)
18 lcfrlem24.q . . . . . 6 𝑄 = (0g𝑆)
19 lcfrlem24.r . . . . . 6 𝑅 = (Base‘𝑆)
20 lcfrlem24.j . . . . . 6 𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
21 lcfrlem24.ib . . . . . 6 (𝜑𝐼𝐵)
22 lcfrlem24.l . . . . . 6 𝐿 = (LKer‘𝑈)
231, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22lcfrlem24 37725 . . . . 5 (𝜑 → ( ‘{𝑋, 𝑌}) = ((𝐿‘(𝐽𝑋)) ∩ (𝐿‘(𝐽𝑌))))
24 inss2 4054 . . . . 5 ((𝐿‘(𝐽𝑋)) ∩ (𝐿‘(𝐽𝑌))) ⊆ (𝐿‘(𝐽𝑌))
2523, 24syl6eqss 3874 . . . 4 (𝜑 → ( ‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐽𝑌)))
261, 3, 9dvhlvec 37268 . . . . . 6 (𝜑𝑈 ∈ LVec)
271, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13lcfrlem22 37723 . . . . . 6 (𝜑𝐵𝐴)
28 lcfrlem25.in . . . . . 6 (𝜑𝐼0 )
296, 7, 8, 26, 27, 21, 28lsatel 35164 . . . . 5 (𝜑𝐵 = (𝑁‘{𝐼}))
30 eqid 2778 . . . . . 6 (LSubSp‘𝑈) = (LSubSp‘𝑈)
311, 3, 9dvhlmod 37269 . . . . . 6 (𝜑𝑈 ∈ LMod)
32 eqid 2778 . . . . . . . 8 (LFnl‘𝑈) = (LFnl‘𝑈)
33 lcfrlem25.d . . . . . . . 8 𝐷 = (LDual‘𝑈)
34 eqid 2778 . . . . . . . 8 (0g𝐷) = (0g𝐷)
35 eqid 2778 . . . . . . . 8 {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
361, 2, 3, 4, 5, 16, 17, 19, 6, 32, 22, 33, 34, 35, 20, 9, 11lcfrlem10 37711 . . . . . . 7 (𝜑 → (𝐽𝑌) ∈ (LFnl‘𝑈))
3732, 22, 30lkrlss 35254 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝐽𝑌) ∈ (LFnl‘𝑈)) → (𝐿‘(𝐽𝑌)) ∈ (LSubSp‘𝑈))
3831, 36, 37syl2anc 579 . . . . . 6 (𝜑 → (𝐿‘(𝐽𝑌)) ∈ (LSubSp‘𝑈))
39 lcfrlem25.jz . . . . . . 7 (𝜑 → ((𝐽𝑌)‘𝐼) = 𝑄)
404, 8, 31, 27lsatssv 35157 . . . . . . . . 9 (𝜑𝐵𝑉)
4140, 21sseldd 3822 . . . . . . . 8 (𝜑𝐼𝑉)
424, 17, 18, 32, 22, 31, 36, 41ellkr2 35250 . . . . . . 7 (𝜑 → (𝐼 ∈ (𝐿‘(𝐽𝑌)) ↔ ((𝐽𝑌)‘𝐼) = 𝑄))
4339, 42mpbird 249 . . . . . 6 (𝜑𝐼 ∈ (𝐿‘(𝐽𝑌)))
4430, 7, 31, 38, 43lspsnel5a 19395 . . . . 5 (𝜑 → (𝑁‘{𝐼}) ⊆ (𝐿‘(𝐽𝑌)))
4529, 44eqsstrd 3858 . . . 4 (𝜑𝐵 ⊆ (𝐿‘(𝐽𝑌)))
4630lsssssubg 19357 . . . . . . 7 (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
4731, 46syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈))
4810eldifad 3804 . . . . . . . 8 (𝜑𝑋𝑉)
4911eldifad 3804 . . . . . . . 8 (𝜑𝑌𝑉)
50 prssi 4585 . . . . . . . 8 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
5148, 49, 50syl2anc 579 . . . . . . 7 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
521, 3, 4, 30, 2dochlss 37513 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝑋, 𝑌} ⊆ 𝑉) → ( ‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
539, 51, 52syl2anc 579 . . . . . 6 (𝜑 → ( ‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
5447, 53sseldd 3822 . . . . 5 (𝜑 → ( ‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑈))
554, 30, 7, 31, 48, 49lspprcl 19377 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
561, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12lcfrlem17 37718 . . . . . . . . . . 11 (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }))
5756eldifad 3804 . . . . . . . . . 10 (𝜑 → (𝑋 + 𝑌) ∈ 𝑉)
5857snssd 4573 . . . . . . . . 9 (𝜑 → {(𝑋 + 𝑌)} ⊆ 𝑉)
591, 3, 4, 30, 2dochlss 37513 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {(𝑋 + 𝑌)} ⊆ 𝑉) → ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
609, 58, 59syl2anc 579 . . . . . . . 8 (𝜑 → ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈))
6130lssincl 19364 . . . . . . . 8 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈) ∧ ( ‘{(𝑋 + 𝑌)}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∈ (LSubSp‘𝑈))
6231, 55, 60, 61syl3anc 1439 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∈ (LSubSp‘𝑈))
6313, 62syl5eqel 2863 . . . . . 6 (𝜑𝐵 ∈ (LSubSp‘𝑈))
6447, 63sseldd 3822 . . . . 5 (𝜑𝐵 ∈ (SubGrp‘𝑈))
6547, 38sseldd 3822 . . . . 5 (𝜑 → (𝐿‘(𝐽𝑌)) ∈ (SubGrp‘𝑈))
6614lsmlub 18466 . . . . 5 ((( ‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑈) ∧ 𝐵 ∈ (SubGrp‘𝑈) ∧ (𝐿‘(𝐽𝑌)) ∈ (SubGrp‘𝑈)) → ((( ‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐽𝑌)) ∧ 𝐵 ⊆ (𝐿‘(𝐽𝑌))) ↔ (( ‘{𝑋, 𝑌})(LSSum‘𝑈)𝐵) ⊆ (𝐿‘(𝐽𝑌))))
6754, 64, 65, 66syl3anc 1439 . . . 4 (𝜑 → ((( ‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐽𝑌)) ∧ 𝐵 ⊆ (𝐿‘(𝐽𝑌))) ↔ (( ‘{𝑋, 𝑌})(LSSum‘𝑈)𝐵) ⊆ (𝐿‘(𝐽𝑌))))
6825, 45, 67mpbi2and 702 . . 3 (𝜑 → (( ‘{𝑋, 𝑌})(LSSum‘𝑈)𝐵) ⊆ (𝐿‘(𝐽𝑌)))
6915, 68eqsstr3d 3859 . 2 (𝜑 → ( ‘{(𝑋 + 𝑌)}) ⊆ (𝐿‘(𝐽𝑌)))
70 eqid 2778 . . 3 (LSHyp‘𝑈) = (LSHyp‘𝑈)
711, 2, 3, 4, 6, 70, 9, 56dochsnshp 37612 . . 3 (𝜑 → ( ‘{(𝑋 + 𝑌)}) ∈ (LSHyp‘𝑈))
721, 2, 3, 4, 5, 16, 17, 19, 6, 32, 22, 33, 34, 35, 20, 9, 11lcfrlem13 37714 . . . . 5 (𝜑 → (𝐽𝑌) ∈ ({𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} ∖ {(0g𝐷)}))
73 eldifsni 4553 . . . . 5 ((𝐽𝑌) ∈ ({𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)} ∖ {(0g𝐷)}) → (𝐽𝑌) ≠ (0g𝐷))
7472, 73syl 17 . . . 4 (𝜑 → (𝐽𝑌) ≠ (0g𝐷))
7570, 32, 22, 33, 34, 26, 36lduallkr3 35321 . . . 4 (𝜑 → ((𝐿‘(𝐽𝑌)) ∈ (LSHyp‘𝑈) ↔ (𝐽𝑌) ≠ (0g𝐷)))
7674, 75mpbird 249 . . 3 (𝜑 → (𝐿‘(𝐽𝑌)) ∈ (LSHyp‘𝑈))
7770, 26, 71, 76lshpcmp 35147 . 2 (𝜑 → (( ‘{(𝑋 + 𝑌)}) ⊆ (𝐿‘(𝐽𝑌)) ↔ ( ‘{(𝑋 + 𝑌)}) = (𝐿‘(𝐽𝑌))))
7869, 77mpbid 224 1 (𝜑 → ( ‘{(𝑋 + 𝑌)}) = (𝐿‘(𝐽𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wne 2969  wrex 3091  {crab 3094  cdif 3789  cin 3791  wss 3792  {csn 4398  {cpr 4400  cmpt 4967  cfv 6137  crio 6884  (class class class)co 6924  Basecbs 16259  +gcplusg 16342  Scalarcsca 16345   ·𝑠 cvsca 16346  0gc0g 16490  SubGrpcsubg 17976  LSSumclsm 18437  LModclmod 19259  LSubSpclss 19328  LSpanclspn 19370  LSAtomsclsa 35133  LSHypclsh 35134  LFnlclfn 35216  LKerclk 35244  LDualcld 35282  HLchlt 35509  LHypclh 36143  DVecHcdvh 37237  ocHcoch 37506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-riotaBAD 35112
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-tpos 7636  df-undef 7683  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-n0 11647  df-z 11733  df-uz 11997  df-fz 12648  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-sca 16358  df-vsca 16359  df-0g 16492  df-mre 16636  df-mrc 16637  df-acs 16639  df-proset 17318  df-poset 17336  df-plt 17348  df-lub 17364  df-glb 17365  df-join 17366  df-meet 17367  df-p0 17429  df-p1 17430  df-lat 17436  df-clat 17498  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-submnd 17726  df-grp 17816  df-minusg 17817  df-sbg 17818  df-subg 17979  df-cntz 18137  df-oppg 18163  df-lsm 18439  df-cmn 18585  df-abl 18586  df-mgp 18881  df-ur 18893  df-ring 18940  df-oppr 19014  df-dvdsr 19032  df-unit 19033  df-invr 19063  df-dvr 19074  df-drng 19145  df-lmod 19261  df-lss 19329  df-lsp 19371  df-lvec 19502  df-lsatoms 35135  df-lshyp 35136  df-lcv 35178  df-lfl 35217  df-lkr 35245  df-ldual 35283  df-oposet 35335  df-ol 35337  df-oml 35338  df-covers 35425  df-ats 35426  df-atl 35457  df-cvlat 35481  df-hlat 35510  df-llines 35657  df-lplanes 35658  df-lvols 35659  df-lines 35660  df-psubsp 35662  df-pmap 35663  df-padd 35955  df-lhyp 36147  df-laut 36148  df-ldil 36263  df-ltrn 36264  df-trl 36318  df-tgrp 36902  df-tendo 36914  df-edring 36916  df-dveca 37162  df-disoa 37188  df-dvech 37238  df-dib 37298  df-dic 37332  df-dih 37388  df-doch 37507  df-djh 37554
This theorem is referenced by:  lcfrlem26  37727
  Copyright terms: Public domain W3C validator