| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapellkr | Structured version Visualization version GIF version | ||
| Description: Membership in the kernel (as shown by hdmaplkr 42018) of the vector to dual map. Line 17 in [Holland95] p. 14. (Contributed by NM, 16-Jun-2015.) |
| Ref | Expression |
|---|---|
| hdmapellkr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmapellkr.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| hdmapellkr.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmapellkr.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmapellkr.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hdmapellkr.z | ⊢ 0 = (0g‘𝑅) |
| hdmapellkr.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmapellkr.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmapellkr.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| hdmapellkr.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| hdmapellkr | ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑌) = 0 ↔ 𝑌 ∈ (𝑂‘{𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmapellkr.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 2 | hdmapellkr.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 3 | hdmapellkr.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | eqid 2731 | . . 3 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
| 5 | eqid 2731 | . . 3 ⊢ (LKer‘𝑈) = (LKer‘𝑈) | |
| 6 | hdmapellkr.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | hdmapellkr.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 8 | hdmapellkr.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 9 | 6, 7, 8 | dvhlmod 41215 | . . 3 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 10 | eqid 2731 | . . . 4 ⊢ ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | |
| 11 | eqid 2731 | . . . 4 ⊢ (Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊)) | |
| 12 | hdmapellkr.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 13 | hdmapellkr.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 14 | 6, 7, 1, 10, 11, 12, 8, 13 | hdmapcl 41935 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) |
| 15 | 6, 10, 11, 7, 4, 8, 14 | lcdvbaselfl 41700 | . . 3 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (LFnl‘𝑈)) |
| 16 | hdmapellkr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 17 | 1, 2, 3, 4, 5, 9, 15, 16 | ellkr2 39196 | . 2 ⊢ (𝜑 → (𝑌 ∈ ((LKer‘𝑈)‘(𝑆‘𝑋)) ↔ ((𝑆‘𝑋)‘𝑌) = 0 )) |
| 18 | hdmapellkr.o | . . . 4 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 19 | 6, 18, 7, 1, 4, 5, 12, 8, 13 | hdmaplkr 42018 | . . 3 ⊢ (𝜑 → ((LKer‘𝑈)‘(𝑆‘𝑋)) = (𝑂‘{𝑋})) |
| 20 | 19 | eleq2d 2817 | . 2 ⊢ (𝜑 → (𝑌 ∈ ((LKer‘𝑈)‘(𝑆‘𝑋)) ↔ 𝑌 ∈ (𝑂‘{𝑋}))) |
| 21 | 17, 20 | bitr3d 281 | 1 ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑌) = 0 ↔ 𝑌 ∈ (𝑂‘{𝑋}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4575 ‘cfv 6487 Basecbs 17126 Scalarcsca 17170 0gc0g 17349 LModclmod 20799 LFnlclfn 39162 LKerclk 39190 HLchlt 39455 LHypclh 40089 DVecHcdvh 41183 ocHcoch 41452 LCDualclcd 41691 HDMapchdma 41897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-riotaBAD 39058 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-undef 8209 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-n0 12388 df-z 12475 df-uz 12739 df-fz 13414 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-sca 17183 df-vsca 17184 df-0g 17351 df-mre 17494 df-mrc 17495 df-acs 17497 df-proset 18206 df-poset 18225 df-plt 18240 df-lub 18256 df-glb 18257 df-join 18258 df-meet 18259 df-p0 18335 df-p1 18336 df-lat 18344 df-clat 18411 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-submnd 18698 df-grp 18855 df-minusg 18856 df-sbg 18857 df-subg 19042 df-cntz 19235 df-oppg 19264 df-lsm 19554 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-oppr 20261 df-dvdsr 20281 df-unit 20282 df-invr 20312 df-dvr 20325 df-nzr 20434 df-rlreg 20615 df-domn 20616 df-drng 20652 df-lmod 20801 df-lss 20871 df-lsp 20911 df-lvec 21043 df-lsatoms 39081 df-lshyp 39082 df-lcv 39124 df-lfl 39163 df-lkr 39191 df-ldual 39229 df-oposet 39281 df-ol 39283 df-oml 39284 df-covers 39371 df-ats 39372 df-atl 39403 df-cvlat 39427 df-hlat 39456 df-llines 39603 df-lplanes 39604 df-lvols 39605 df-lines 39606 df-psubsp 39608 df-pmap 39609 df-padd 39901 df-lhyp 40093 df-laut 40094 df-ldil 40209 df-ltrn 40210 df-trl 40264 df-tgrp 40848 df-tendo 40860 df-edring 40862 df-dveca 41108 df-disoa 41134 df-dvech 41184 df-dib 41244 df-dic 41278 df-dih 41334 df-doch 41453 df-djh 41500 df-lcdual 41692 df-mapd 41730 df-hvmap 41862 df-hdmap1 41898 df-hdmap 41899 |
| This theorem is referenced by: hdmapip0com 42022 hdmapoc 42036 |
| Copyright terms: Public domain | W3C validator |