Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem3 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39595. (Contributed by NM, 27-Feb-2015.) |
Ref | Expression |
---|---|
lcfrlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem1.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem1.q | ⊢ × = (.r‘𝑆) |
lcfrlem1.z | ⊢ 0 = (0g‘𝑆) |
lcfrlem1.i | ⊢ 𝐼 = (invr‘𝑆) |
lcfrlem1.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfrlem1.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem1.t | ⊢ · = ( ·𝑠 ‘𝐷) |
lcfrlem1.m | ⊢ − = (-g‘𝐷) |
lcfrlem1.u | ⊢ (𝜑 → 𝑈 ∈ LVec) |
lcfrlem1.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lcfrlem1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lcfrlem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lcfrlem1.n | ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) |
lcfrlem1.h | ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) |
lcfrlem2.l | ⊢ 𝐿 = (LKer‘𝑈) |
Ref | Expression |
---|---|
lcfrlem3 | ⊢ (𝜑 → 𝑋 ∈ (𝐿‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem1.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
2 | lcfrlem1.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑈) | |
3 | lcfrlem1.q | . . 3 ⊢ × = (.r‘𝑆) | |
4 | lcfrlem1.z | . . 3 ⊢ 0 = (0g‘𝑆) | |
5 | lcfrlem1.i | . . 3 ⊢ 𝐼 = (invr‘𝑆) | |
6 | lcfrlem1.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
7 | lcfrlem1.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
8 | lcfrlem1.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
9 | lcfrlem1.m | . . 3 ⊢ − = (-g‘𝐷) | |
10 | lcfrlem1.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ LVec) | |
11 | lcfrlem1.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
12 | lcfrlem1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
13 | lcfrlem1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
14 | lcfrlem1.n | . . 3 ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) | |
15 | lcfrlem1.h | . . 3 ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) | |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | lcfrlem1 39552 | . 2 ⊢ (𝜑 → (𝐻‘𝑋) = 0 ) |
17 | lcfrlem2.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
18 | lveclmod 20366 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝑈 ∈ LMod) | |
19 | 10, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
20 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
21 | 2 | lmodring 20129 | . . . . . . . 8 ⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) |
22 | 19, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ Ring) |
23 | 2 | lvecdrng 20365 | . . . . . . . . 9 ⊢ (𝑈 ∈ LVec → 𝑆 ∈ DivRing) |
24 | 10, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ DivRing) |
25 | 2, 20, 1, 6 | lflcl 37074 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝑆)) |
26 | 10, 12, 13, 25 | syl3anc 1370 | . . . . . . . 8 ⊢ (𝜑 → (𝐺‘𝑋) ∈ (Base‘𝑆)) |
27 | 20, 4, 5 | drnginvrcl 20006 | . . . . . . . 8 ⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑋) ∈ (Base‘𝑆) ∧ (𝐺‘𝑋) ≠ 0 ) → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) |
28 | 24, 26, 14, 27 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) |
29 | 2, 20, 1, 6 | lflcl 37074 | . . . . . . . 8 ⊢ ((𝑈 ∈ LVec ∧ 𝐸 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐸‘𝑋) ∈ (Base‘𝑆)) |
30 | 10, 11, 13, 29 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → (𝐸‘𝑋) ∈ (Base‘𝑆)) |
31 | 20, 3 | ringcl 19798 | . . . . . . 7 ⊢ ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆) ∧ (𝐸‘𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) |
32 | 22, 28, 30, 31 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) |
33 | 6, 2, 20, 7, 8, 19, 32, 12 | ldualvscl 37149 | . . . . 5 ⊢ (𝜑 → (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺) ∈ 𝐹) |
34 | 6, 7, 9, 19, 11, 33 | ldualvsubcl 37166 | . . . 4 ⊢ (𝜑 → (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) ∈ 𝐹) |
35 | 15, 34 | eqeltrid 2845 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
36 | 1, 2, 4, 6, 17, 10, 35, 13 | ellkr2 37101 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐿‘𝐻) ↔ (𝐻‘𝑋) = 0 )) |
37 | 16, 36 | mpbird 256 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐿‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 .rcmulr 16961 Scalarcsca 16963 ·𝑠 cvsca 16964 0gc0g 17148 -gcsg 18577 Ringcrg 19781 invrcinvr 19911 DivRingcdr 19989 LModclmod 20121 LVecclvec 20362 LFnlclfn 37067 LKerclk 37095 LDualcld 37133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-om 7707 df-1st 7824 df-2nd 7825 df-tpos 8033 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12582 df-fz 13239 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-sca 16976 df-vsca 16977 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-minusg 18579 df-sbg 18580 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ur 19736 df-ring 19783 df-oppr 19860 df-dvdsr 19881 df-unit 19882 df-invr 19912 df-drng 19991 df-lmod 20123 df-lvec 20363 df-lfl 37068 df-lkr 37096 df-ldual 37134 |
This theorem is referenced by: lcfrlem35 39587 |
Copyright terms: Public domain | W3C validator |