| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcfr 41623. (Contributed by NM, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| lcfrlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcfrlem1.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lcfrlem1.q | ⊢ × = (.r‘𝑆) |
| lcfrlem1.z | ⊢ 0 = (0g‘𝑆) |
| lcfrlem1.i | ⊢ 𝐼 = (invr‘𝑆) |
| lcfrlem1.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcfrlem1.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcfrlem1.t | ⊢ · = ( ·𝑠 ‘𝐷) |
| lcfrlem1.m | ⊢ − = (-g‘𝐷) |
| lcfrlem1.u | ⊢ (𝜑 → 𝑈 ∈ LVec) |
| lcfrlem1.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
| lcfrlem1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lcfrlem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lcfrlem1.n | ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) |
| lcfrlem1.h | ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) |
| lcfrlem2.l | ⊢ 𝐿 = (LKer‘𝑈) |
| Ref | Expression |
|---|---|
| lcfrlem3 | ⊢ (𝜑 → 𝑋 ∈ (𝐿‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfrlem1.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 2 | lcfrlem1.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 3 | lcfrlem1.q | . . 3 ⊢ × = (.r‘𝑆) | |
| 4 | lcfrlem1.z | . . 3 ⊢ 0 = (0g‘𝑆) | |
| 5 | lcfrlem1.i | . . 3 ⊢ 𝐼 = (invr‘𝑆) | |
| 6 | lcfrlem1.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 7 | lcfrlem1.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
| 8 | lcfrlem1.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 9 | lcfrlem1.m | . . 3 ⊢ − = (-g‘𝐷) | |
| 10 | lcfrlem1.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ LVec) | |
| 11 | lcfrlem1.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
| 12 | lcfrlem1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 13 | lcfrlem1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 14 | lcfrlem1.n | . . 3 ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) | |
| 15 | lcfrlem1.h | . . 3 ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) | |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | lcfrlem1 41580 | . 2 ⊢ (𝜑 → (𝐻‘𝑋) = 0 ) |
| 17 | lcfrlem2.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
| 18 | lveclmod 21038 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝑈 ∈ LMod) | |
| 19 | 10, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 20 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 21 | 2 | lmodring 20799 | . . . . . . . 8 ⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) |
| 22 | 19, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 23 | 2 | lvecdrng 21037 | . . . . . . . . 9 ⊢ (𝑈 ∈ LVec → 𝑆 ∈ DivRing) |
| 24 | 10, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ DivRing) |
| 25 | 2, 20, 1, 6 | lflcl 39102 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝑆)) |
| 26 | 10, 12, 13, 25 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (𝐺‘𝑋) ∈ (Base‘𝑆)) |
| 27 | 20, 4, 5 | drnginvrcl 20666 | . . . . . . . 8 ⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑋) ∈ (Base‘𝑆) ∧ (𝐺‘𝑋) ≠ 0 ) → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) |
| 28 | 24, 26, 14, 27 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) |
| 29 | 2, 20, 1, 6 | lflcl 39102 | . . . . . . . 8 ⊢ ((𝑈 ∈ LVec ∧ 𝐸 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐸‘𝑋) ∈ (Base‘𝑆)) |
| 30 | 10, 11, 13, 29 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐸‘𝑋) ∈ (Base‘𝑆)) |
| 31 | 20, 3 | ringcl 20166 | . . . . . . 7 ⊢ ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆) ∧ (𝐸‘𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) |
| 32 | 22, 28, 30, 31 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) |
| 33 | 6, 2, 20, 7, 8, 19, 32, 12 | ldualvscl 39177 | . . . . 5 ⊢ (𝜑 → (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺) ∈ 𝐹) |
| 34 | 6, 7, 9, 19, 11, 33 | ldualvsubcl 39194 | . . . 4 ⊢ (𝜑 → (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) ∈ 𝐹) |
| 35 | 15, 34 | eqeltrid 2835 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| 36 | 1, 2, 4, 6, 17, 10, 35, 13 | ellkr2 39129 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐿‘𝐻) ↔ (𝐻‘𝑋) = 0 )) |
| 37 | 16, 36 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐿‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 .rcmulr 17159 Scalarcsca 17161 ·𝑠 cvsca 17162 0gc0g 17340 -gcsg 18845 Ringcrg 20149 invrcinvr 20303 DivRingcdr 20642 LModclmod 20791 LVecclvec 21034 LFnlclfn 39095 LKerclk 39123 LDualcld 39161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-sbg 18848 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-drng 20644 df-lmod 20793 df-lvec 21035 df-lfl 39096 df-lkr 39124 df-ldual 39162 |
| This theorem is referenced by: lcfrlem35 41615 |
| Copyright terms: Public domain | W3C validator |