| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for lcfr 41579. (Contributed by NM, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| lcfrlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
| lcfrlem1.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lcfrlem1.q | ⊢ × = (.r‘𝑆) |
| lcfrlem1.z | ⊢ 0 = (0g‘𝑆) |
| lcfrlem1.i | ⊢ 𝐼 = (invr‘𝑆) |
| lcfrlem1.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lcfrlem1.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lcfrlem1.t | ⊢ · = ( ·𝑠 ‘𝐷) |
| lcfrlem1.m | ⊢ − = (-g‘𝐷) |
| lcfrlem1.u | ⊢ (𝜑 → 𝑈 ∈ LVec) |
| lcfrlem1.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
| lcfrlem1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lcfrlem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lcfrlem1.n | ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) |
| lcfrlem1.h | ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) |
| lcfrlem2.l | ⊢ 𝐿 = (LKer‘𝑈) |
| Ref | Expression |
|---|---|
| lcfrlem3 | ⊢ (𝜑 → 𝑋 ∈ (𝐿‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfrlem1.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 2 | lcfrlem1.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 3 | lcfrlem1.q | . . 3 ⊢ × = (.r‘𝑆) | |
| 4 | lcfrlem1.z | . . 3 ⊢ 0 = (0g‘𝑆) | |
| 5 | lcfrlem1.i | . . 3 ⊢ 𝐼 = (invr‘𝑆) | |
| 6 | lcfrlem1.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 7 | lcfrlem1.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
| 8 | lcfrlem1.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 9 | lcfrlem1.m | . . 3 ⊢ − = (-g‘𝐷) | |
| 10 | lcfrlem1.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ LVec) | |
| 11 | lcfrlem1.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
| 12 | lcfrlem1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 13 | lcfrlem1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 14 | lcfrlem1.n | . . 3 ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) | |
| 15 | lcfrlem1.h | . . 3 ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) | |
| 16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | lcfrlem1 41536 | . 2 ⊢ (𝜑 → (𝐻‘𝑋) = 0 ) |
| 17 | lcfrlem2.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
| 18 | lveclmod 21013 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝑈 ∈ LMod) | |
| 19 | 10, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 20 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 21 | 2 | lmodring 20774 | . . . . . . . 8 ⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) |
| 22 | 19, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 23 | 2 | lvecdrng 21012 | . . . . . . . . 9 ⊢ (𝑈 ∈ LVec → 𝑆 ∈ DivRing) |
| 24 | 10, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ DivRing) |
| 25 | 2, 20, 1, 6 | lflcl 39057 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝑆)) |
| 26 | 10, 12, 13, 25 | syl3anc 1373 | . . . . . . . 8 ⊢ (𝜑 → (𝐺‘𝑋) ∈ (Base‘𝑆)) |
| 27 | 20, 4, 5 | drnginvrcl 20662 | . . . . . . . 8 ⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑋) ∈ (Base‘𝑆) ∧ (𝐺‘𝑋) ≠ 0 ) → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) |
| 28 | 24, 26, 14, 27 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) |
| 29 | 2, 20, 1, 6 | lflcl 39057 | . . . . . . . 8 ⊢ ((𝑈 ∈ LVec ∧ 𝐸 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐸‘𝑋) ∈ (Base‘𝑆)) |
| 30 | 10, 11, 13, 29 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝐸‘𝑋) ∈ (Base‘𝑆)) |
| 31 | 20, 3 | ringcl 20159 | . . . . . . 7 ⊢ ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆) ∧ (𝐸‘𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) |
| 32 | 22, 28, 30, 31 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) |
| 33 | 6, 2, 20, 7, 8, 19, 32, 12 | ldualvscl 39132 | . . . . 5 ⊢ (𝜑 → (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺) ∈ 𝐹) |
| 34 | 6, 7, 9, 19, 11, 33 | ldualvsubcl 39149 | . . . 4 ⊢ (𝜑 → (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) ∈ 𝐹) |
| 35 | 15, 34 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| 36 | 1, 2, 4, 6, 17, 10, 35, 13 | ellkr2 39084 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐿‘𝐻) ↔ (𝐻‘𝑋) = 0 )) |
| 37 | 16, 36 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐿‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 0gc0g 17402 -gcsg 18867 Ringcrg 20142 invrcinvr 20296 DivRingcdr 20638 LModclmod 20766 LVecclvec 21009 LFnlclfn 39050 LKerclk 39078 LDualcld 39116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-drng 20640 df-lmod 20768 df-lvec 21010 df-lfl 39051 df-lkr 39079 df-ldual 39117 |
| This theorem is referenced by: lcfrlem35 41571 |
| Copyright terms: Public domain | W3C validator |