Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem3 | Structured version Visualization version GIF version |
Description: Lemma for lcfr 39599. (Contributed by NM, 27-Feb-2015.) |
Ref | Expression |
---|---|
lcfrlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
lcfrlem1.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lcfrlem1.q | ⊢ × = (.r‘𝑆) |
lcfrlem1.z | ⊢ 0 = (0g‘𝑆) |
lcfrlem1.i | ⊢ 𝐼 = (invr‘𝑆) |
lcfrlem1.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lcfrlem1.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcfrlem1.t | ⊢ · = ( ·𝑠 ‘𝐷) |
lcfrlem1.m | ⊢ − = (-g‘𝐷) |
lcfrlem1.u | ⊢ (𝜑 → 𝑈 ∈ LVec) |
lcfrlem1.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lcfrlem1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lcfrlem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lcfrlem1.n | ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) |
lcfrlem1.h | ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) |
lcfrlem2.l | ⊢ 𝐿 = (LKer‘𝑈) |
Ref | Expression |
---|---|
lcfrlem3 | ⊢ (𝜑 → 𝑋 ∈ (𝐿‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem1.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
2 | lcfrlem1.s | . . 3 ⊢ 𝑆 = (Scalar‘𝑈) | |
3 | lcfrlem1.q | . . 3 ⊢ × = (.r‘𝑆) | |
4 | lcfrlem1.z | . . 3 ⊢ 0 = (0g‘𝑆) | |
5 | lcfrlem1.i | . . 3 ⊢ 𝐼 = (invr‘𝑆) | |
6 | lcfrlem1.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
7 | lcfrlem1.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
8 | lcfrlem1.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
9 | lcfrlem1.m | . . 3 ⊢ − = (-g‘𝐷) | |
10 | lcfrlem1.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ LVec) | |
11 | lcfrlem1.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
12 | lcfrlem1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
13 | lcfrlem1.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
14 | lcfrlem1.n | . . 3 ⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) | |
15 | lcfrlem1.h | . . 3 ⊢ 𝐻 = (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) | |
16 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | lcfrlem1 39556 | . 2 ⊢ (𝜑 → (𝐻‘𝑋) = 0 ) |
17 | lcfrlem2.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
18 | lveclmod 20368 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝑈 ∈ LMod) | |
19 | 10, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
20 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
21 | 2 | lmodring 20131 | . . . . . . . 8 ⊢ (𝑈 ∈ LMod → 𝑆 ∈ Ring) |
22 | 19, 21 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ Ring) |
23 | 2 | lvecdrng 20367 | . . . . . . . . 9 ⊢ (𝑈 ∈ LVec → 𝑆 ∈ DivRing) |
24 | 10, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ DivRing) |
25 | 2, 20, 1, 6 | lflcl 37078 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ (Base‘𝑆)) |
26 | 10, 12, 13, 25 | syl3anc 1370 | . . . . . . . 8 ⊢ (𝜑 → (𝐺‘𝑋) ∈ (Base‘𝑆)) |
27 | 20, 4, 5 | drnginvrcl 20008 | . . . . . . . 8 ⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑋) ∈ (Base‘𝑆) ∧ (𝐺‘𝑋) ≠ 0 ) → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) |
28 | 24, 26, 14, 27 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆)) |
29 | 2, 20, 1, 6 | lflcl 37078 | . . . . . . . 8 ⊢ ((𝑈 ∈ LVec ∧ 𝐸 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐸‘𝑋) ∈ (Base‘𝑆)) |
30 | 10, 11, 13, 29 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → (𝐸‘𝑋) ∈ (Base‘𝑆)) |
31 | 20, 3 | ringcl 19800 | . . . . . . 7 ⊢ ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺‘𝑋)) ∈ (Base‘𝑆) ∧ (𝐸‘𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) |
32 | 22, 28, 30, 31 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → ((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) ∈ (Base‘𝑆)) |
33 | 6, 2, 20, 7, 8, 19, 32, 12 | ldualvscl 37153 | . . . . 5 ⊢ (𝜑 → (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺) ∈ 𝐹) |
34 | 6, 7, 9, 19, 11, 33 | ldualvsubcl 37170 | . . . 4 ⊢ (𝜑 → (𝐸 − (((𝐼‘(𝐺‘𝑋)) × (𝐸‘𝑋)) · 𝐺)) ∈ 𝐹) |
35 | 15, 34 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
36 | 1, 2, 4, 6, 17, 10, 35, 13 | ellkr2 37105 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐿‘𝐻) ↔ (𝐻‘𝑋) = 0 )) |
37 | 16, 36 | mpbird 256 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐿‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 0gc0g 17150 -gcsg 18579 Ringcrg 19783 invrcinvr 19913 DivRingcdr 19991 LModclmod 20123 LVecclvec 20364 LFnlclfn 37071 LKerclk 37099 LDualcld 37137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-drng 19993 df-lmod 20125 df-lvec 20365 df-lfl 37072 df-lkr 37100 df-ldual 37138 |
This theorem is referenced by: lcfrlem35 39591 |
Copyright terms: Public domain | W3C validator |