Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem3 Structured version   Visualization version   GIF version

Theorem lcfrlem3 38840
Description: Lemma for lcfr 38881. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
lcfrlem2.l 𝐿 = (LKer‘𝑈)
Assertion
Ref Expression
lcfrlem3 (𝜑𝑋 ∈ (𝐿𝐻))

Proof of Theorem lcfrlem3
StepHypRef Expression
1 lcfrlem1.v . . 3 𝑉 = (Base‘𝑈)
2 lcfrlem1.s . . 3 𝑆 = (Scalar‘𝑈)
3 lcfrlem1.q . . 3 × = (.r𝑆)
4 lcfrlem1.z . . 3 0 = (0g𝑆)
5 lcfrlem1.i . . 3 𝐼 = (invr𝑆)
6 lcfrlem1.f . . 3 𝐹 = (LFnl‘𝑈)
7 lcfrlem1.d . . 3 𝐷 = (LDual‘𝑈)
8 lcfrlem1.t . . 3 · = ( ·𝑠𝐷)
9 lcfrlem1.m . . 3 = (-g𝐷)
10 lcfrlem1.u . . 3 (𝜑𝑈 ∈ LVec)
11 lcfrlem1.e . . 3 (𝜑𝐸𝐹)
12 lcfrlem1.g . . 3 (𝜑𝐺𝐹)
13 lcfrlem1.x . . 3 (𝜑𝑋𝑉)
14 lcfrlem1.n . . 3 (𝜑 → (𝐺𝑋) ≠ 0 )
15 lcfrlem1.h . . 3 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15lcfrlem1 38838 . 2 (𝜑 → (𝐻𝑋) = 0 )
17 lcfrlem2.l . . 3 𝐿 = (LKer‘𝑈)
18 lveclmod 19871 . . . . . 6 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
1910, 18syl 17 . . . . 5 (𝜑𝑈 ∈ LMod)
20 eqid 2798 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
212lmodring 19635 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
2219, 21syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
232lvecdrng 19870 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
2410, 23syl 17 . . . . . . . 8 (𝜑𝑆 ∈ DivRing)
252, 20, 1, 6lflcl 36360 . . . . . . . . 9 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
2610, 12, 13, 25syl3anc 1368 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
2720, 4, 5drnginvrcl 19512 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2824, 26, 14, 27syl3anc 1368 . . . . . . 7 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
292, 20, 1, 6lflcl 36360 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
3010, 11, 13, 29syl3anc 1368 . . . . . . 7 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
3120, 3ringcl 19307 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
3222, 28, 30, 31syl3anc 1368 . . . . . 6 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
336, 2, 20, 7, 8, 19, 32, 12ldualvscl 36435 . . . . 5 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
346, 7, 9, 19, 11, 33ldualvsubcl 36452 . . . 4 (𝜑 → (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ∈ 𝐹)
3515, 34eqeltrid 2894 . . 3 (𝜑𝐻𝐹)
361, 2, 4, 6, 17, 10, 35, 13ellkr2 36387 . 2 (𝜑 → (𝑋 ∈ (𝐿𝐻) ↔ (𝐻𝑋) = 0 ))
3716, 36mpbird 260 1 (𝜑𝑋 ∈ (𝐿𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wne 2987  cfv 6324  (class class class)co 7135  Basecbs 16475  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  -gcsg 18097  Ringcrg 19290  invrcinvr 19417  DivRingcdr 19495  LModclmod 19627  LVecclvec 19867  LFnlclfn 36353  LKerclk 36381  LDualcld 36419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lvec 19868  df-lfl 36354  df-lkr 36382  df-ldual 36420
This theorem is referenced by:  lcfrlem35  38873
  Copyright terms: Public domain W3C validator