Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem3 Structured version   Visualization version   GIF version

Theorem lcfrlem3 39558
Description: Lemma for lcfr 39599. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
lcfrlem2.l 𝐿 = (LKer‘𝑈)
Assertion
Ref Expression
lcfrlem3 (𝜑𝑋 ∈ (𝐿𝐻))

Proof of Theorem lcfrlem3
StepHypRef Expression
1 lcfrlem1.v . . 3 𝑉 = (Base‘𝑈)
2 lcfrlem1.s . . 3 𝑆 = (Scalar‘𝑈)
3 lcfrlem1.q . . 3 × = (.r𝑆)
4 lcfrlem1.z . . 3 0 = (0g𝑆)
5 lcfrlem1.i . . 3 𝐼 = (invr𝑆)
6 lcfrlem1.f . . 3 𝐹 = (LFnl‘𝑈)
7 lcfrlem1.d . . 3 𝐷 = (LDual‘𝑈)
8 lcfrlem1.t . . 3 · = ( ·𝑠𝐷)
9 lcfrlem1.m . . 3 = (-g𝐷)
10 lcfrlem1.u . . 3 (𝜑𝑈 ∈ LVec)
11 lcfrlem1.e . . 3 (𝜑𝐸𝐹)
12 lcfrlem1.g . . 3 (𝜑𝐺𝐹)
13 lcfrlem1.x . . 3 (𝜑𝑋𝑉)
14 lcfrlem1.n . . 3 (𝜑 → (𝐺𝑋) ≠ 0 )
15 lcfrlem1.h . . 3 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15lcfrlem1 39556 . 2 (𝜑 → (𝐻𝑋) = 0 )
17 lcfrlem2.l . . 3 𝐿 = (LKer‘𝑈)
18 lveclmod 20368 . . . . . 6 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
1910, 18syl 17 . . . . 5 (𝜑𝑈 ∈ LMod)
20 eqid 2738 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
212lmodring 20131 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
2219, 21syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
232lvecdrng 20367 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
2410, 23syl 17 . . . . . . . 8 (𝜑𝑆 ∈ DivRing)
252, 20, 1, 6lflcl 37078 . . . . . . . . 9 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
2610, 12, 13, 25syl3anc 1370 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
2720, 4, 5drnginvrcl 20008 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2824, 26, 14, 27syl3anc 1370 . . . . . . 7 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
292, 20, 1, 6lflcl 37078 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
3010, 11, 13, 29syl3anc 1370 . . . . . . 7 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
3120, 3ringcl 19800 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
3222, 28, 30, 31syl3anc 1370 . . . . . 6 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
336, 2, 20, 7, 8, 19, 32, 12ldualvscl 37153 . . . . 5 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
346, 7, 9, 19, 11, 33ldualvsubcl 37170 . . . 4 (𝜑 → (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ∈ 𝐹)
3515, 34eqeltrid 2843 . . 3 (𝜑𝐻𝐹)
361, 2, 4, 6, 17, 10, 35, 13ellkr2 37105 . 2 (𝜑 → (𝑋 ∈ (𝐿𝐻) ↔ (𝐻𝑋) = 0 ))
3716, 36mpbird 256 1 (𝜑𝑋 ∈ (𝐿𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  -gcsg 18579  Ringcrg 19783  invrcinvr 19913  DivRingcdr 19991  LModclmod 20123  LVecclvec 20364  LFnlclfn 37071  LKerclk 37099  LDualcld 37137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lvec 20365  df-lfl 37072  df-lkr 37100  df-ldual 37138
This theorem is referenced by:  lcfrlem35  39591
  Copyright terms: Public domain W3C validator