Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem3 Structured version   Visualization version   GIF version

Theorem lcfrlem3 37700
 Description: Lemma for lcfr 37741. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
lcfrlem2.l 𝐿 = (LKer‘𝑈)
Assertion
Ref Expression
lcfrlem3 (𝜑𝑋 ∈ (𝐿𝐻))

Proof of Theorem lcfrlem3
StepHypRef Expression
1 lcfrlem1.v . . 3 𝑉 = (Base‘𝑈)
2 lcfrlem1.s . . 3 𝑆 = (Scalar‘𝑈)
3 lcfrlem1.q . . 3 × = (.r𝑆)
4 lcfrlem1.z . . 3 0 = (0g𝑆)
5 lcfrlem1.i . . 3 𝐼 = (invr𝑆)
6 lcfrlem1.f . . 3 𝐹 = (LFnl‘𝑈)
7 lcfrlem1.d . . 3 𝐷 = (LDual‘𝑈)
8 lcfrlem1.t . . 3 · = ( ·𝑠𝐷)
9 lcfrlem1.m . . 3 = (-g𝐷)
10 lcfrlem1.u . . 3 (𝜑𝑈 ∈ LVec)
11 lcfrlem1.e . . 3 (𝜑𝐸𝐹)
12 lcfrlem1.g . . 3 (𝜑𝐺𝐹)
13 lcfrlem1.x . . 3 (𝜑𝑋𝑉)
14 lcfrlem1.n . . 3 (𝜑 → (𝐺𝑋) ≠ 0 )
15 lcfrlem1.h . . 3 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15lcfrlem1 37698 . 2 (𝜑 → (𝐻𝑋) = 0 )
17 lcfrlem2.l . . 3 𝐿 = (LKer‘𝑈)
18 lveclmod 19501 . . . . . 6 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
1910, 18syl 17 . . . . 5 (𝜑𝑈 ∈ LMod)
20 eqid 2778 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
212lmodring 19263 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
2219, 21syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
232lvecdrng 19500 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
2410, 23syl 17 . . . . . . . 8 (𝜑𝑆 ∈ DivRing)
252, 20, 1, 6lflcl 35220 . . . . . . . . 9 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
2610, 12, 13, 25syl3anc 1439 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
2720, 4, 5drnginvrcl 19156 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2824, 26, 14, 27syl3anc 1439 . . . . . . 7 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
292, 20, 1, 6lflcl 35220 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
3010, 11, 13, 29syl3anc 1439 . . . . . . 7 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
3120, 3ringcl 18948 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
3222, 28, 30, 31syl3anc 1439 . . . . . 6 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
336, 2, 20, 7, 8, 19, 32, 12ldualvscl 35295 . . . . 5 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
346, 7, 9, 19, 11, 33ldualvsubcl 35312 . . . 4 (𝜑 → (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ∈ 𝐹)
3515, 34syl5eqel 2863 . . 3 (𝜑𝐻𝐹)
361, 2, 4, 6, 17, 10, 35, 13ellkr2 35247 . 2 (𝜑 → (𝑋 ∈ (𝐿𝐻) ↔ (𝐻𝑋) = 0 ))
3716, 36mpbird 249 1 (𝜑𝑋 ∈ (𝐿𝐻))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1601   ∈ wcel 2107   ≠ wne 2969  ‘cfv 6135  (class class class)co 6922  Basecbs 16255  .rcmulr 16339  Scalarcsca 16341   ·𝑠 cvsca 16342  0gc0g 16486  -gcsg 17811  Ringcrg 18934  invrcinvr 19058  DivRingcdr 19139  LModclmod 19255  LVecclvec 19497  LFnlclfn 35213  LKerclk 35241  LDualcld 35279 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-sbg 17814  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-drng 19141  df-lmod 19257  df-lvec 19498  df-lfl 35214  df-lkr 35242  df-ldual 35280 This theorem is referenced by:  lcfrlem35  37733
 Copyright terms: Public domain W3C validator