Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem3 Structured version   Visualization version   GIF version

Theorem lcfrlem3 41663
Description: Lemma for lcfr 41704. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v 𝑉 = (Base‘𝑈)
lcfrlem1.s 𝑆 = (Scalar‘𝑈)
lcfrlem1.q × = (.r𝑆)
lcfrlem1.z 0 = (0g𝑆)
lcfrlem1.i 𝐼 = (invr𝑆)
lcfrlem1.f 𝐹 = (LFnl‘𝑈)
lcfrlem1.d 𝐷 = (LDual‘𝑈)
lcfrlem1.t · = ( ·𝑠𝐷)
lcfrlem1.m = (-g𝐷)
lcfrlem1.u (𝜑𝑈 ∈ LVec)
lcfrlem1.e (𝜑𝐸𝐹)
lcfrlem1.g (𝜑𝐺𝐹)
lcfrlem1.x (𝜑𝑋𝑉)
lcfrlem1.n (𝜑 → (𝐺𝑋) ≠ 0 )
lcfrlem1.h 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
lcfrlem2.l 𝐿 = (LKer‘𝑈)
Assertion
Ref Expression
lcfrlem3 (𝜑𝑋 ∈ (𝐿𝐻))

Proof of Theorem lcfrlem3
StepHypRef Expression
1 lcfrlem1.v . . 3 𝑉 = (Base‘𝑈)
2 lcfrlem1.s . . 3 𝑆 = (Scalar‘𝑈)
3 lcfrlem1.q . . 3 × = (.r𝑆)
4 lcfrlem1.z . . 3 0 = (0g𝑆)
5 lcfrlem1.i . . 3 𝐼 = (invr𝑆)
6 lcfrlem1.f . . 3 𝐹 = (LFnl‘𝑈)
7 lcfrlem1.d . . 3 𝐷 = (LDual‘𝑈)
8 lcfrlem1.t . . 3 · = ( ·𝑠𝐷)
9 lcfrlem1.m . . 3 = (-g𝐷)
10 lcfrlem1.u . . 3 (𝜑𝑈 ∈ LVec)
11 lcfrlem1.e . . 3 (𝜑𝐸𝐹)
12 lcfrlem1.g . . 3 (𝜑𝐺𝐹)
13 lcfrlem1.x . . 3 (𝜑𝑋𝑉)
14 lcfrlem1.n . . 3 (𝜑 → (𝐺𝑋) ≠ 0 )
15 lcfrlem1.h . . 3 𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15lcfrlem1 41661 . 2 (𝜑 → (𝐻𝑋) = 0 )
17 lcfrlem2.l . . 3 𝐿 = (LKer‘𝑈)
18 lveclmod 21042 . . . . . 6 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
1910, 18syl 17 . . . . 5 (𝜑𝑈 ∈ LMod)
20 eqid 2733 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
212lmodring 20803 . . . . . . . 8 (𝑈 ∈ LMod → 𝑆 ∈ Ring)
2219, 21syl 17 . . . . . . 7 (𝜑𝑆 ∈ Ring)
232lvecdrng 21041 . . . . . . . . 9 (𝑈 ∈ LVec → 𝑆 ∈ DivRing)
2410, 23syl 17 . . . . . . . 8 (𝜑𝑆 ∈ DivRing)
252, 20, 1, 6lflcl 39183 . . . . . . . . 9 ((𝑈 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ (Base‘𝑆))
2610, 12, 13, 25syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐺𝑋) ∈ (Base‘𝑆))
2720, 4, 5drnginvrcl 20670 . . . . . . . 8 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ (Base‘𝑆) ∧ (𝐺𝑋) ≠ 0 ) → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
2824, 26, 14, 27syl3anc 1373 . . . . . . 7 (𝜑 → (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆))
292, 20, 1, 6lflcl 39183 . . . . . . . 8 ((𝑈 ∈ LVec ∧ 𝐸𝐹𝑋𝑉) → (𝐸𝑋) ∈ (Base‘𝑆))
3010, 11, 13, 29syl3anc 1373 . . . . . . 7 (𝜑 → (𝐸𝑋) ∈ (Base‘𝑆))
3120, 3ringcl 20170 . . . . . . 7 ((𝑆 ∈ Ring ∧ (𝐼‘(𝐺𝑋)) ∈ (Base‘𝑆) ∧ (𝐸𝑋) ∈ (Base‘𝑆)) → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
3222, 28, 30, 31syl3anc 1373 . . . . . 6 (𝜑 → ((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) ∈ (Base‘𝑆))
336, 2, 20, 7, 8, 19, 32, 12ldualvscl 39258 . . . . 5 (𝜑 → (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺) ∈ 𝐹)
346, 7, 9, 19, 11, 33ldualvsubcl 39275 . . . 4 (𝜑 → (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺)) ∈ 𝐹)
3515, 34eqeltrid 2837 . . 3 (𝜑𝐻𝐹)
361, 2, 4, 6, 17, 10, 35, 13ellkr2 39210 . 2 (𝜑 → (𝑋 ∈ (𝐿𝐻) ↔ (𝐻𝑋) = 0 ))
3716, 36mpbird 257 1 (𝜑𝑋 ∈ (𝐿𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wne 2929  cfv 6486  (class class class)co 7352  Basecbs 17122  .rcmulr 17164  Scalarcsca 17166   ·𝑠 cvsca 17167  0gc0g 17345  -gcsg 18850  Ringcrg 20153  invrcinvr 20307  DivRingcdr 20646  LModclmod 20795  LVecclvec 21038  LFnlclfn 39176  LKerclk 39204  LDualcld 39242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-drng 20648  df-lmod 20797  df-lvec 21039  df-lfl 39177  df-lkr 39205  df-ldual 39243
This theorem is referenced by:  lcfrlem35  41696
  Copyright terms: Public domain W3C validator