| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2n | Structured version Visualization version GIF version | ||
| Description: Lemma for lclkr 41522. (Contributed by NM, 12-Jan-2015.) |
| Ref | Expression |
|---|---|
| lclkrlem2m.v | ⊢ 𝑉 = (Base‘𝑈) |
| lclkrlem2m.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| lclkrlem2m.s | ⊢ 𝑆 = (Scalar‘𝑈) |
| lclkrlem2m.q | ⊢ × = (.r‘𝑆) |
| lclkrlem2m.z | ⊢ 0 = (0g‘𝑆) |
| lclkrlem2m.i | ⊢ 𝐼 = (invr‘𝑆) |
| lclkrlem2m.m | ⊢ − = (-g‘𝑈) |
| lclkrlem2m.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lclkrlem2m.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lclkrlem2m.p | ⊢ + = (+g‘𝐷) |
| lclkrlem2m.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lclkrlem2m.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lclkrlem2m.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
| lclkrlem2m.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lclkrlem2n.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| lclkrlem2n.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lclkrlem2n.w | ⊢ (𝜑 → 𝑈 ∈ LVec) |
| lclkrlem2n.j | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) |
| lclkrlem2n.k | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) |
| Ref | Expression |
|---|---|
| lclkrlem2n | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . 2 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 2 | lclkrlem2n.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 3 | lclkrlem2n.w | . . 3 ⊢ (𝜑 → 𝑈 ∈ LVec) | |
| 4 | lveclmod 21019 | . . 3 ⊢ (𝑈 ∈ LVec → 𝑈 ∈ LMod) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 6 | lclkrlem2m.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 7 | lclkrlem2m.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
| 8 | lclkrlem2m.p | . . . 4 ⊢ + = (+g‘𝐷) | |
| 9 | lclkrlem2m.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
| 10 | lclkrlem2m.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 11 | 6, 7, 8, 5, 9, 10 | ldualvaddcl 39118 | . . 3 ⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐹) |
| 12 | lclkrlem2n.l | . . . 4 ⊢ 𝐿 = (LKer‘𝑈) | |
| 13 | 6, 12, 1 | lkrlss 39083 | . . 3 ⊢ ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹) → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈)) |
| 14 | 5, 11, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈)) |
| 15 | lclkrlem2n.j | . . 3 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) | |
| 16 | lclkrlem2m.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 17 | lclkrlem2m.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
| 18 | lclkrlem2m.z | . . . 4 ⊢ 0 = (0g‘𝑆) | |
| 19 | lclkrlem2m.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 20 | 16, 17, 18, 6, 12, 3, 11, 19 | ellkr2 39079 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐿‘(𝐸 + 𝐺)) ↔ ((𝐸 + 𝐺)‘𝑋) = 0 )) |
| 21 | 15, 20 | mpbird 257 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐿‘(𝐸 + 𝐺))) |
| 22 | lclkrlem2n.k | . . 3 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) | |
| 23 | lclkrlem2m.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 24 | 16, 17, 18, 6, 12, 3, 11, 23 | ellkr2 39079 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝐿‘(𝐸 + 𝐺)) ↔ ((𝐸 + 𝐺)‘𝑌) = 0 )) |
| 25 | 22, 24 | mpbird 257 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐿‘(𝐸 + 𝐺))) |
| 26 | 1, 2, 5, 14, 21, 25 | lspprss 20904 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 {cpr 4593 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 .rcmulr 17227 Scalarcsca 17229 ·𝑠 cvsca 17230 0gc0g 17408 -gcsg 18873 invrcinvr 20302 LModclmod 20772 LSubSpclss 20843 LSpanclspn 20883 LVecclvec 21015 LFnlclfn 39045 LKerclk 39073 LDualcld 39111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-sca 17242 df-vsca 17243 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-sbg 18876 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-lmod 20774 df-lss 20844 df-lsp 20884 df-lvec 21016 df-lfl 39046 df-lkr 39074 df-ldual 39112 |
| This theorem is referenced by: lclkrlem2v 41517 |
| Copyright terms: Public domain | W3C validator |