Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2n Structured version   Visualization version   GIF version

Theorem lclkrlem2n 41559
Description: Lemma for lclkr 41572. (Contributed by NM, 12-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2m.v 𝑉 = (Base‘𝑈)
lclkrlem2m.t · = ( ·𝑠𝑈)
lclkrlem2m.s 𝑆 = (Scalar‘𝑈)
lclkrlem2m.q × = (.r𝑆)
lclkrlem2m.z 0 = (0g𝑆)
lclkrlem2m.i 𝐼 = (invr𝑆)
lclkrlem2m.m = (-g𝑈)
lclkrlem2m.f 𝐹 = (LFnl‘𝑈)
lclkrlem2m.d 𝐷 = (LDual‘𝑈)
lclkrlem2m.p + = (+g𝐷)
lclkrlem2m.x (𝜑𝑋𝑉)
lclkrlem2m.y (𝜑𝑌𝑉)
lclkrlem2m.e (𝜑𝐸𝐹)
lclkrlem2m.g (𝜑𝐺𝐹)
lclkrlem2n.n 𝑁 = (LSpan‘𝑈)
lclkrlem2n.l 𝐿 = (LKer‘𝑈)
lclkrlem2n.w (𝜑𝑈 ∈ LVec)
lclkrlem2n.j (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 )
lclkrlem2n.k (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 )
Assertion
Ref Expression
lclkrlem2n (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺)))

Proof of Theorem lclkrlem2n
StepHypRef Expression
1 eqid 2731 . 2 (LSubSp‘𝑈) = (LSubSp‘𝑈)
2 lclkrlem2n.n . 2 𝑁 = (LSpan‘𝑈)
3 lclkrlem2n.w . . 3 (𝜑𝑈 ∈ LVec)
4 lveclmod 21035 . . 3 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
53, 4syl 17 . 2 (𝜑𝑈 ∈ LMod)
6 lclkrlem2m.f . . . 4 𝐹 = (LFnl‘𝑈)
7 lclkrlem2m.d . . . 4 𝐷 = (LDual‘𝑈)
8 lclkrlem2m.p . . . 4 + = (+g𝐷)
9 lclkrlem2m.e . . . 4 (𝜑𝐸𝐹)
10 lclkrlem2m.g . . . 4 (𝜑𝐺𝐹)
116, 7, 8, 5, 9, 10ldualvaddcl 39169 . . 3 (𝜑 → (𝐸 + 𝐺) ∈ 𝐹)
12 lclkrlem2n.l . . . 4 𝐿 = (LKer‘𝑈)
136, 12, 1lkrlss 39134 . . 3 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹) → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈))
145, 11, 13syl2anc 584 . 2 (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈))
15 lclkrlem2n.j . . 3 (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 )
16 lclkrlem2m.v . . . 4 𝑉 = (Base‘𝑈)
17 lclkrlem2m.s . . . 4 𝑆 = (Scalar‘𝑈)
18 lclkrlem2m.z . . . 4 0 = (0g𝑆)
19 lclkrlem2m.x . . . 4 (𝜑𝑋𝑉)
2016, 17, 18, 6, 12, 3, 11, 19ellkr2 39130 . . 3 (𝜑 → (𝑋 ∈ (𝐿‘(𝐸 + 𝐺)) ↔ ((𝐸 + 𝐺)‘𝑋) = 0 ))
2115, 20mpbird 257 . 2 (𝜑𝑋 ∈ (𝐿‘(𝐸 + 𝐺)))
22 lclkrlem2n.k . . 3 (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 )
23 lclkrlem2m.y . . . 4 (𝜑𝑌𝑉)
2416, 17, 18, 6, 12, 3, 11, 23ellkr2 39130 . . 3 (𝜑 → (𝑌 ∈ (𝐿‘(𝐸 + 𝐺)) ↔ ((𝐸 + 𝐺)‘𝑌) = 0 ))
2522, 24mpbird 257 . 2 (𝜑𝑌 ∈ (𝐿‘(𝐸 + 𝐺)))
261, 2, 5, 14, 21, 25lspprss 20920 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wss 3897  {cpr 4573  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  .rcmulr 17157  Scalarcsca 17159   ·𝑠 cvsca 17160  0gc0g 17338  -gcsg 18843  invrcinvr 20300  LModclmod 20788  LSubSpclss 20859  LSpanclspn 20899  LVecclvec 21031  LFnlclfn 39096  LKerclk 39124  LDualcld 39162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-sca 17172  df-vsca 17173  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lvec 21032  df-lfl 39097  df-lkr 39125  df-ldual 39163
This theorem is referenced by:  lclkrlem2v  41567
  Copyright terms: Public domain W3C validator