Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2n Structured version   Visualization version   GIF version

Theorem lclkrlem2n 41519
Description: Lemma for lclkr 41532. (Contributed by NM, 12-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2m.v 𝑉 = (Base‘𝑈)
lclkrlem2m.t · = ( ·𝑠𝑈)
lclkrlem2m.s 𝑆 = (Scalar‘𝑈)
lclkrlem2m.q × = (.r𝑆)
lclkrlem2m.z 0 = (0g𝑆)
lclkrlem2m.i 𝐼 = (invr𝑆)
lclkrlem2m.m = (-g𝑈)
lclkrlem2m.f 𝐹 = (LFnl‘𝑈)
lclkrlem2m.d 𝐷 = (LDual‘𝑈)
lclkrlem2m.p + = (+g𝐷)
lclkrlem2m.x (𝜑𝑋𝑉)
lclkrlem2m.y (𝜑𝑌𝑉)
lclkrlem2m.e (𝜑𝐸𝐹)
lclkrlem2m.g (𝜑𝐺𝐹)
lclkrlem2n.n 𝑁 = (LSpan‘𝑈)
lclkrlem2n.l 𝐿 = (LKer‘𝑈)
lclkrlem2n.w (𝜑𝑈 ∈ LVec)
lclkrlem2n.j (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 )
lclkrlem2n.k (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 )
Assertion
Ref Expression
lclkrlem2n (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺)))

Proof of Theorem lclkrlem2n
StepHypRef Expression
1 eqid 2729 . 2 (LSubSp‘𝑈) = (LSubSp‘𝑈)
2 lclkrlem2n.n . 2 𝑁 = (LSpan‘𝑈)
3 lclkrlem2n.w . . 3 (𝜑𝑈 ∈ LVec)
4 lveclmod 21029 . . 3 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
53, 4syl 17 . 2 (𝜑𝑈 ∈ LMod)
6 lclkrlem2m.f . . . 4 𝐹 = (LFnl‘𝑈)
7 lclkrlem2m.d . . . 4 𝐷 = (LDual‘𝑈)
8 lclkrlem2m.p . . . 4 + = (+g𝐷)
9 lclkrlem2m.e . . . 4 (𝜑𝐸𝐹)
10 lclkrlem2m.g . . . 4 (𝜑𝐺𝐹)
116, 7, 8, 5, 9, 10ldualvaddcl 39128 . . 3 (𝜑 → (𝐸 + 𝐺) ∈ 𝐹)
12 lclkrlem2n.l . . . 4 𝐿 = (LKer‘𝑈)
136, 12, 1lkrlss 39093 . . 3 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹) → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈))
145, 11, 13syl2anc 584 . 2 (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈))
15 lclkrlem2n.j . . 3 (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 )
16 lclkrlem2m.v . . . 4 𝑉 = (Base‘𝑈)
17 lclkrlem2m.s . . . 4 𝑆 = (Scalar‘𝑈)
18 lclkrlem2m.z . . . 4 0 = (0g𝑆)
19 lclkrlem2m.x . . . 4 (𝜑𝑋𝑉)
2016, 17, 18, 6, 12, 3, 11, 19ellkr2 39089 . . 3 (𝜑 → (𝑋 ∈ (𝐿‘(𝐸 + 𝐺)) ↔ ((𝐸 + 𝐺)‘𝑋) = 0 ))
2115, 20mpbird 257 . 2 (𝜑𝑋 ∈ (𝐿‘(𝐸 + 𝐺)))
22 lclkrlem2n.k . . 3 (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 )
23 lclkrlem2m.y . . . 4 (𝜑𝑌𝑉)
2416, 17, 18, 6, 12, 3, 11, 23ellkr2 39089 . . 3 (𝜑 → (𝑌 ∈ (𝐿‘(𝐸 + 𝐺)) ↔ ((𝐸 + 𝐺)‘𝑌) = 0 ))
2522, 24mpbird 257 . 2 (𝜑𝑌 ∈ (𝐿‘(𝐸 + 𝐺)))
261, 2, 5, 14, 21, 25lspprss 20914 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3905  {cpr 4581  cfv 6486  (class class class)co 7353  Basecbs 17139  +gcplusg 17180  .rcmulr 17181  Scalarcsca 17183   ·𝑠 cvsca 17184  0gc0g 17362  -gcsg 18833  invrcinvr 20291  LModclmod 20782  LSubSpclss 20853  LSpanclspn 20893  LVecclvec 21025  LFnlclfn 39055  LKerclk 39083  LDualcld 39121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-n0 12404  df-z 12491  df-uz 12755  df-fz 13430  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-plusg 17193  df-sca 17196  df-vsca 17197  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-minusg 18835  df-sbg 18836  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-lmod 20784  df-lss 20854  df-lsp 20894  df-lvec 21026  df-lfl 39056  df-lkr 39084  df-ldual 39122
This theorem is referenced by:  lclkrlem2v  41527
  Copyright terms: Public domain W3C validator