Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2n Structured version   Visualization version   GIF version

Theorem lclkrlem2n 41692
Description: Lemma for lclkr 41705. (Contributed by NM, 12-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2m.v 𝑉 = (Base‘𝑈)
lclkrlem2m.t · = ( ·𝑠𝑈)
lclkrlem2m.s 𝑆 = (Scalar‘𝑈)
lclkrlem2m.q × = (.r𝑆)
lclkrlem2m.z 0 = (0g𝑆)
lclkrlem2m.i 𝐼 = (invr𝑆)
lclkrlem2m.m = (-g𝑈)
lclkrlem2m.f 𝐹 = (LFnl‘𝑈)
lclkrlem2m.d 𝐷 = (LDual‘𝑈)
lclkrlem2m.p + = (+g𝐷)
lclkrlem2m.x (𝜑𝑋𝑉)
lclkrlem2m.y (𝜑𝑌𝑉)
lclkrlem2m.e (𝜑𝐸𝐹)
lclkrlem2m.g (𝜑𝐺𝐹)
lclkrlem2n.n 𝑁 = (LSpan‘𝑈)
lclkrlem2n.l 𝐿 = (LKer‘𝑈)
lclkrlem2n.w (𝜑𝑈 ∈ LVec)
lclkrlem2n.j (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 )
lclkrlem2n.k (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 )
Assertion
Ref Expression
lclkrlem2n (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺)))

Proof of Theorem lclkrlem2n
StepHypRef Expression
1 eqid 2733 . 2 (LSubSp‘𝑈) = (LSubSp‘𝑈)
2 lclkrlem2n.n . 2 𝑁 = (LSpan‘𝑈)
3 lclkrlem2n.w . . 3 (𝜑𝑈 ∈ LVec)
4 lveclmod 21049 . . 3 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
53, 4syl 17 . 2 (𝜑𝑈 ∈ LMod)
6 lclkrlem2m.f . . . 4 𝐹 = (LFnl‘𝑈)
7 lclkrlem2m.d . . . 4 𝐷 = (LDual‘𝑈)
8 lclkrlem2m.p . . . 4 + = (+g𝐷)
9 lclkrlem2m.e . . . 4 (𝜑𝐸𝐹)
10 lclkrlem2m.g . . . 4 (𝜑𝐺𝐹)
116, 7, 8, 5, 9, 10ldualvaddcl 39302 . . 3 (𝜑 → (𝐸 + 𝐺) ∈ 𝐹)
12 lclkrlem2n.l . . . 4 𝐿 = (LKer‘𝑈)
136, 12, 1lkrlss 39267 . . 3 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹) → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈))
145, 11, 13syl2anc 584 . 2 (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈))
15 lclkrlem2n.j . . 3 (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 )
16 lclkrlem2m.v . . . 4 𝑉 = (Base‘𝑈)
17 lclkrlem2m.s . . . 4 𝑆 = (Scalar‘𝑈)
18 lclkrlem2m.z . . . 4 0 = (0g𝑆)
19 lclkrlem2m.x . . . 4 (𝜑𝑋𝑉)
2016, 17, 18, 6, 12, 3, 11, 19ellkr2 39263 . . 3 (𝜑 → (𝑋 ∈ (𝐿‘(𝐸 + 𝐺)) ↔ ((𝐸 + 𝐺)‘𝑋) = 0 ))
2115, 20mpbird 257 . 2 (𝜑𝑋 ∈ (𝐿‘(𝐸 + 𝐺)))
22 lclkrlem2n.k . . 3 (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 )
23 lclkrlem2m.y . . . 4 (𝜑𝑌𝑉)
2416, 17, 18, 6, 12, 3, 11, 23ellkr2 39263 . . 3 (𝜑 → (𝑌 ∈ (𝐿‘(𝐸 + 𝐺)) ↔ ((𝐸 + 𝐺)‘𝑌) = 0 ))
2522, 24mpbird 257 . 2 (𝜑𝑌 ∈ (𝐿‘(𝐸 + 𝐺)))
261, 2, 5, 14, 21, 25lspprss 20934 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wss 3898  {cpr 4579  cfv 6489  (class class class)co 7355  Basecbs 17127  +gcplusg 17168  .rcmulr 17169  Scalarcsca 17171   ·𝑠 cvsca 17172  0gc0g 17350  -gcsg 18856  invrcinvr 20314  LModclmod 20802  LSubSpclss 20873  LSpanclspn 20913  LVecclvec 21045  LFnlclfn 39229  LKerclk 39257  LDualcld 39295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-sca 17184  df-vsca 17185  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-sbg 18859  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-lmod 20804  df-lss 20874  df-lsp 20914  df-lvec 21046  df-lfl 39230  df-lkr 39258  df-ldual 39296
This theorem is referenced by:  lclkrlem2v  41700
  Copyright terms: Public domain W3C validator