![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2n | Structured version Visualization version GIF version |
Description: Lemma for lclkr 39996. (Contributed by NM, 12-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2m.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2m.t | ⊢ · = ( ·𝑠 ‘𝑈) |
lclkrlem2m.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lclkrlem2m.q | ⊢ × = (.r‘𝑆) |
lclkrlem2m.z | ⊢ 0 = (0g‘𝑆) |
lclkrlem2m.i | ⊢ 𝐼 = (invr‘𝑆) |
lclkrlem2m.m | ⊢ − = (-g‘𝑈) |
lclkrlem2m.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2m.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2m.p | ⊢ + = (+g‘𝐷) |
lclkrlem2m.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lclkrlem2m.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lclkrlem2m.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2m.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2n.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lclkrlem2n.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2n.w | ⊢ (𝜑 → 𝑈 ∈ LVec) |
lclkrlem2n.j | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) |
lclkrlem2n.k | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) |
Ref | Expression |
---|---|
lclkrlem2n | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . 2 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
2 | lclkrlem2n.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
3 | lclkrlem2n.w | . . 3 ⊢ (𝜑 → 𝑈 ∈ LVec) | |
4 | lveclmod 20567 | . . 3 ⊢ (𝑈 ∈ LVec → 𝑈 ∈ LMod) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑈 ∈ LMod) |
6 | lclkrlem2m.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
7 | lclkrlem2m.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
8 | lclkrlem2m.p | . . . 4 ⊢ + = (+g‘𝐷) | |
9 | lclkrlem2m.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
10 | lclkrlem2m.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
11 | 6, 7, 8, 5, 9, 10 | ldualvaddcl 37592 | . . 3 ⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐹) |
12 | lclkrlem2n.l | . . . 4 ⊢ 𝐿 = (LKer‘𝑈) | |
13 | 6, 12, 1 | lkrlss 37557 | . . 3 ⊢ ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹) → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈)) |
14 | 5, 11, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈)) |
15 | lclkrlem2n.j | . . 3 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 ) | |
16 | lclkrlem2m.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
17 | lclkrlem2m.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
18 | lclkrlem2m.z | . . . 4 ⊢ 0 = (0g‘𝑆) | |
19 | lclkrlem2m.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
20 | 16, 17, 18, 6, 12, 3, 11, 19 | ellkr2 37553 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐿‘(𝐸 + 𝐺)) ↔ ((𝐸 + 𝐺)‘𝑋) = 0 )) |
21 | 15, 20 | mpbird 256 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐿‘(𝐸 + 𝐺))) |
22 | lclkrlem2n.k | . . 3 ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 ) | |
23 | lclkrlem2m.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
24 | 16, 17, 18, 6, 12, 3, 11, 23 | ellkr2 37553 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝐿‘(𝐸 + 𝐺)) ↔ ((𝐸 + 𝐺)‘𝑌) = 0 )) |
25 | 22, 24 | mpbird 256 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐿‘(𝐸 + 𝐺))) |
26 | 1, 2, 5, 14, 21, 25 | lspprss 20453 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ⊆ wss 3910 {cpr 4588 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 +gcplusg 17133 .rcmulr 17134 Scalarcsca 17136 ·𝑠 cvsca 17137 0gc0g 17321 -gcsg 18750 invrcinvr 20100 LModclmod 20322 LSubSpclss 20392 LSpanclspn 20432 LVecclvec 20563 LFnlclfn 37519 LKerclk 37547 LDualcld 37585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-sca 17149 df-vsca 17150 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-sbg 18753 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-lmod 20324 df-lss 20393 df-lsp 20433 df-lvec 20564 df-lfl 37520 df-lkr 37548 df-ldual 37586 |
This theorem is referenced by: lclkrlem2v 39991 |
Copyright terms: Public domain | W3C validator |