Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2n Structured version   Visualization version   GIF version

Theorem lclkrlem2n 39118
Description: Lemma for lclkr 39131. (Contributed by NM, 12-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2m.v 𝑉 = (Base‘𝑈)
lclkrlem2m.t · = ( ·𝑠𝑈)
lclkrlem2m.s 𝑆 = (Scalar‘𝑈)
lclkrlem2m.q × = (.r𝑆)
lclkrlem2m.z 0 = (0g𝑆)
lclkrlem2m.i 𝐼 = (invr𝑆)
lclkrlem2m.m = (-g𝑈)
lclkrlem2m.f 𝐹 = (LFnl‘𝑈)
lclkrlem2m.d 𝐷 = (LDual‘𝑈)
lclkrlem2m.p + = (+g𝐷)
lclkrlem2m.x (𝜑𝑋𝑉)
lclkrlem2m.y (𝜑𝑌𝑉)
lclkrlem2m.e (𝜑𝐸𝐹)
lclkrlem2m.g (𝜑𝐺𝐹)
lclkrlem2n.n 𝑁 = (LSpan‘𝑈)
lclkrlem2n.l 𝐿 = (LKer‘𝑈)
lclkrlem2n.w (𝜑𝑈 ∈ LVec)
lclkrlem2n.j (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 )
lclkrlem2n.k (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 )
Assertion
Ref Expression
lclkrlem2n (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺)))

Proof of Theorem lclkrlem2n
StepHypRef Expression
1 eqid 2758 . 2 (LSubSp‘𝑈) = (LSubSp‘𝑈)
2 lclkrlem2n.n . 2 𝑁 = (LSpan‘𝑈)
3 lclkrlem2n.w . . 3 (𝜑𝑈 ∈ LVec)
4 lveclmod 19946 . . 3 (𝑈 ∈ LVec → 𝑈 ∈ LMod)
53, 4syl 17 . 2 (𝜑𝑈 ∈ LMod)
6 lclkrlem2m.f . . . 4 𝐹 = (LFnl‘𝑈)
7 lclkrlem2m.d . . . 4 𝐷 = (LDual‘𝑈)
8 lclkrlem2m.p . . . 4 + = (+g𝐷)
9 lclkrlem2m.e . . . 4 (𝜑𝐸𝐹)
10 lclkrlem2m.g . . . 4 (𝜑𝐺𝐹)
116, 7, 8, 5, 9, 10ldualvaddcl 36728 . . 3 (𝜑 → (𝐸 + 𝐺) ∈ 𝐹)
12 lclkrlem2n.l . . . 4 𝐿 = (LKer‘𝑈)
136, 12, 1lkrlss 36693 . . 3 ((𝑈 ∈ LMod ∧ (𝐸 + 𝐺) ∈ 𝐹) → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈))
145, 11, 13syl2anc 587 . 2 (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ (LSubSp‘𝑈))
15 lclkrlem2n.j . . 3 (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 )
16 lclkrlem2m.v . . . 4 𝑉 = (Base‘𝑈)
17 lclkrlem2m.s . . . 4 𝑆 = (Scalar‘𝑈)
18 lclkrlem2m.z . . . 4 0 = (0g𝑆)
19 lclkrlem2m.x . . . 4 (𝜑𝑋𝑉)
2016, 17, 18, 6, 12, 3, 11, 19ellkr2 36689 . . 3 (𝜑 → (𝑋 ∈ (𝐿‘(𝐸 + 𝐺)) ↔ ((𝐸 + 𝐺)‘𝑋) = 0 ))
2115, 20mpbird 260 . 2 (𝜑𝑋 ∈ (𝐿‘(𝐸 + 𝐺)))
22 lclkrlem2n.k . . 3 (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 )
23 lclkrlem2m.y . . . 4 (𝜑𝑌𝑉)
2416, 17, 18, 6, 12, 3, 11, 23ellkr2 36689 . . 3 (𝜑 → (𝑌 ∈ (𝐿‘(𝐸 + 𝐺)) ↔ ((𝐸 + 𝐺)‘𝑌) = 0 ))
2522, 24mpbird 260 . 2 (𝜑𝑌 ∈ (𝐿‘(𝐸 + 𝐺)))
261, 2, 5, 14, 21, 25lspprss 19832 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wss 3858  {cpr 4524  cfv 6335  (class class class)co 7150  Basecbs 16541  +gcplusg 16623  .rcmulr 16624  Scalarcsca 16626   ·𝑠 cvsca 16627  0gc0g 16771  -gcsg 18171  invrcinvr 19492  LModclmod 19702  LSubSpclss 19771  LSpanclspn 19811  LVecclvec 19942  LFnlclfn 36655  LKerclk 36683  LDualcld 36721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7405  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-4 11739  df-5 11740  df-6 11741  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-struct 16543  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-plusg 16636  df-sca 16639  df-vsca 16640  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-sbg 18174  df-cmn 18975  df-abl 18976  df-mgp 19308  df-ur 19320  df-ring 19367  df-lmod 19704  df-lss 19772  df-lsp 19812  df-lvec 19943  df-lfl 36656  df-lkr 36684  df-ldual 36722
This theorem is referenced by:  lclkrlem2v  39126
  Copyright terms: Public domain W3C validator