Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . . . 5
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β π β {β, β}) |
2 | | simp2 1137 |
. . . . 5
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β πΉ β (β βpm π)) |
3 | | elfznn0 13590 |
. . . . . 6
β’ (π β (0...π) β π β
β0) |
4 | 3 | 3ad2ant3 1135 |
. . . . 5
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β π β
β0) |
5 | | elfzuz3 13494 |
. . . . . . 7
β’ (π β (0...π) β π β (β€β₯βπ)) |
6 | 5 | 3ad2ant3 1135 |
. . . . . 6
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β π β (β€β₯βπ)) |
7 | | uznn0sub 12857 |
. . . . . 6
β’ (π β
(β€β₯βπ) β (π β π) β
β0) |
8 | 6, 7 | syl 17 |
. . . . 5
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β (π β π) β
β0) |
9 | | dvnadd 25437 |
. . . . 5
β’ (((π β {β, β} β§
πΉ β (β
βpm π))
β§ (π β
β0 β§ (π β π) β β0)) β
((π Dπ
((π Dπ
πΉ)βπ))β(π β π)) = ((π Dπ πΉ)β(π + (π β π)))) |
10 | 1, 2, 4, 8, 9 | syl22anc 837 |
. . . 4
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β ((π Dπ ((π Dπ πΉ)βπ))β(π β π)) = ((π Dπ πΉ)β(π + (π β π)))) |
11 | 4 | nn0cnd 12530 |
. . . . . 6
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β π β β) |
12 | | elfzuz2 13502 |
. . . . . . . . 9
β’ (π β (0...π) β π β
(β€β₯β0)) |
13 | 12 | 3ad2ant3 1135 |
. . . . . . . 8
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β π β
(β€β₯β0)) |
14 | | nn0uz 12860 |
. . . . . . . 8
β’
β0 = (β€β₯β0) |
15 | 13, 14 | eleqtrrdi 2844 |
. . . . . . 7
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β π β
β0) |
16 | 15 | nn0cnd 12530 |
. . . . . 6
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β π β β) |
17 | 11, 16 | pncan3d 11570 |
. . . . 5
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β (π + (π β π)) = π) |
18 | 17 | fveq2d 6892 |
. . . 4
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β ((π Dπ πΉ)β(π + (π β π))) = ((π Dπ πΉ)βπ)) |
19 | 10, 18 | eqtrd 2772 |
. . 3
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β ((π Dπ ((π Dπ πΉ)βπ))β(π β π)) = ((π Dπ πΉ)βπ)) |
20 | 19 | dmeqd 5903 |
. 2
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β dom ((π Dπ ((π Dπ πΉ)βπ))β(π β π)) = dom ((π Dπ πΉ)βπ)) |
21 | | cnex 11187 |
. . . . 5
β’ β
β V |
22 | 21 | a1i 11 |
. . . 4
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β β β
V) |
23 | | dvnf 25435 |
. . . . 5
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β
β0) β ((π Dπ πΉ)βπ):dom ((π Dπ πΉ)βπ)βΆβ) |
24 | 3, 23 | syl3an3 1165 |
. . . 4
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β ((π Dπ πΉ)βπ):dom ((π Dπ πΉ)βπ)βΆβ) |
25 | | dvnbss 25436 |
. . . . . 6
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β
β0) β dom ((π Dπ πΉ)βπ) β dom πΉ) |
26 | 3, 25 | syl3an3 1165 |
. . . . 5
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β dom ((π Dπ πΉ)βπ) β dom πΉ) |
27 | | elpmi 8836 |
. . . . . . 7
β’ (πΉ β (β
βpm π)
β (πΉ:dom πΉβΆβ β§ dom πΉ β π)) |
28 | 27 | 3ad2ant2 1134 |
. . . . . 6
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β (πΉ:dom πΉβΆβ β§ dom πΉ β π)) |
29 | 28 | simprd 496 |
. . . . 5
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β dom πΉ β π) |
30 | 26, 29 | sstrd 3991 |
. . . 4
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β dom ((π Dπ πΉ)βπ) β π) |
31 | | elpm2r 8835 |
. . . 4
β’
(((β β V β§ π β {β, β}) β§ (((π Dπ πΉ)βπ):dom ((π Dπ πΉ)βπ)βΆβ β§ dom ((π Dπ πΉ)βπ) β π)) β ((π Dπ πΉ)βπ) β (β βpm π)) |
32 | 22, 1, 24, 30, 31 | syl22anc 837 |
. . 3
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β ((π Dπ πΉ)βπ) β (β βpm π)) |
33 | | dvnbss 25436 |
. . 3
β’ ((π β {β, β} β§
((π Dπ
πΉ)βπ) β (β βpm π) β§ (π β π) β β0) β dom
((π Dπ
((π Dπ
πΉ)βπ))β(π β π)) β dom ((π Dπ πΉ)βπ)) |
34 | 1, 32, 8, 33 | syl3anc 1371 |
. 2
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β dom ((π Dπ ((π Dπ πΉ)βπ))β(π β π)) β dom ((π Dπ πΉ)βπ)) |
35 | 20, 34 | eqsstrrd 4020 |
1
β’ ((π β {β, β} β§
πΉ β (β
βpm π)
β§ π β (0...π)) β dom ((π Dπ πΉ)βπ) β dom ((π Dπ πΉ)βπ)) |