MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvn2bss Structured version   Visualization version   GIF version

Theorem dvn2bss 24533
Description: An N-times differentiable point is an M-times differentiable point, if 𝑀𝑁. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
dvn2bss ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑀))

Proof of Theorem dvn2bss
StepHypRef Expression
1 simp1 1133 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ})
2 simp2 1134 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
3 elfznn0 12995 . . . . . 6 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
433ad2ant3 1132 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℕ0)
5 elfzuz3 12899 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝑀))
653ad2ant3 1132 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝑀))
7 uznn0sub 12265 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
86, 7syl 17 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → (𝑁𝑀) ∈ ℕ0)
9 dvnadd 24532 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))))
101, 2, 4, 8, 9syl22anc 837 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))))
114nn0cnd 11945 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℂ)
12 elfzuz2 12907 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → 𝑁 ∈ (ℤ‘0))
13123ad2ant3 1132 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ‘0))
14 nn0uz 12268 . . . . . . . 8 0 = (ℤ‘0)
1513, 14eleqtrrdi 2901 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
1615nn0cnd 11945 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ ℂ)
1711, 16pncan3d 10989 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 + (𝑁𝑀)) = 𝑁)
1817fveq2d 6649 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))) = ((𝑆 D𝑛 𝐹)‘𝑁))
1910, 18eqtrd 2833 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁))
2019dmeqd 5738 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
21 cnex 10607 . . . . 5 ℂ ∈ V
2221a1i 11 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → ℂ ∈ V)
23 dvnf 24530 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ)
243, 23syl3an3 1162 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ)
25 dvnbss 24531 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹)
263, 25syl3an3 1162 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹)
27 elpmi 8408 . . . . . . 7 (𝐹 ∈ (ℂ ↑pm 𝑆) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
28273ad2ant2 1131 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
2928simprd 499 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom 𝐹𝑆)
3026, 29sstrd 3925 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝑆)
31 elpm2r 8407 . . . 4 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ ∧ dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝑆)) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆))
3222, 1, 24, 30, 31syl22anc 837 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆))
33 dvnbss 24531 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆) ∧ (𝑁𝑀) ∈ ℕ0) → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑀))
341, 32, 8, 33syl3anc 1368 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑀))
3520, 34eqsstrrd 3954 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  {cpr 4527  dom cdm 5519  wf 6320  cfv 6324  (class class class)co 7135  pm cpm 8390  cc 10524  cr 10525  0cc0 10526   + caddc 10529  cmin 10859  0cn0 11885  cuz 12231  ...cfz 12885   D𝑛 cdvn 24467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cnp 21833  df-haus 21920  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-limc 24469  df-dv 24470  df-dvn 24471
This theorem is referenced by:  taylplem1  24958  taylply2  24963  taylply  24964  taylthlem1  24968  taylthlem2  24969
  Copyright terms: Public domain W3C validator