MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvn2bss Structured version   Visualization version   GIF version

Theorem dvn2bss 25889
Description: An N-times differentiable point is an M-times differentiable point, if 𝑀𝑁. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
dvn2bss ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑀))

Proof of Theorem dvn2bss
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝑆 ∈ {ℝ, ℂ})
2 simp2 1137 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
3 elfznn0 13642 . . . . . 6 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
433ad2ant3 1135 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℕ0)
5 elfzuz3 13543 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝑀))
653ad2ant3 1135 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ𝑀))
7 uznn0sub 12896 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
86, 7syl 17 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → (𝑁𝑀) ∈ ℕ0)
9 dvnadd 25888 . . . . 5 (((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆)) ∧ (𝑀 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))))
101, 2, 4, 8, 9syl22anc 838 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))))
114nn0cnd 12569 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝑀 ∈ ℂ)
12 elfzuz2 13551 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → 𝑁 ∈ (ℤ‘0))
13123ad2ant3 1135 . . . . . . . 8 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ (ℤ‘0))
14 nn0uz 12899 . . . . . . . 8 0 = (ℤ‘0)
1513, 14eleqtrrdi 2846 . . . . . . 7 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
1615nn0cnd 12569 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → 𝑁 ∈ ℂ)
1711, 16pncan3d 11602 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → (𝑀 + (𝑁𝑀)) = 𝑁)
1817fveq2d 6885 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘(𝑀 + (𝑁𝑀))) = ((𝑆 D𝑛 𝐹)‘𝑁))
1910, 18eqtrd 2771 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = ((𝑆 D𝑛 𝐹)‘𝑁))
2019dmeqd 5890 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) = dom ((𝑆 D𝑛 𝐹)‘𝑁))
21 cnex 11215 . . . . 5 ℂ ∈ V
2221a1i 11 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → ℂ ∈ V)
23 dvnf 25886 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ)
243, 23syl3an3 1165 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ)
25 dvnbss 25887 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ ℕ0) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹)
263, 25syl3an3 1165 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ dom 𝐹)
27 elpmi 8865 . . . . . . 7 (𝐹 ∈ (ℂ ↑pm 𝑆) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
28273ad2ant2 1134 . . . . . 6 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹𝑆))
2928simprd 495 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom 𝐹𝑆)
3026, 29sstrd 3974 . . . 4 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝑆)
31 elpm2r 8864 . . . 4 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (((𝑆 D𝑛 𝐹)‘𝑀):dom ((𝑆 D𝑛 𝐹)‘𝑀)⟶ℂ ∧ dom ((𝑆 D𝑛 𝐹)‘𝑀) ⊆ 𝑆)) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆))
3222, 1, 24, 30, 31syl22anc 838 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆))
33 dvnbss 25887 . . 3 ((𝑆 ∈ {ℝ, ℂ} ∧ ((𝑆 D𝑛 𝐹)‘𝑀) ∈ (ℂ ↑pm 𝑆) ∧ (𝑁𝑀) ∈ ℕ0) → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑀))
341, 32, 8, 33syl3anc 1373 . 2 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 ((𝑆 D𝑛 𝐹)‘𝑀))‘(𝑁𝑀)) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑀))
3520, 34eqsstrrd 3999 1 ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐹 ∈ (ℂ ↑pm 𝑆) ∧ 𝑀 ∈ (0...𝑁)) → dom ((𝑆 D𝑛 𝐹)‘𝑁) ⊆ dom ((𝑆 D𝑛 𝐹)‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931  {cpr 4608  dom cdm 5659  wf 6532  cfv 6536  (class class class)co 7410  pm cpm 8846  cc 11132  cr 11133  0cc0 11134   + caddc 11137  cmin 11471  0cn0 12506  cuz 12857  ...cfz 13529   D𝑛 cdvn 25822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-icc 13374  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-starv 17291  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-rest 17441  df-topn 17442  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cnp 23171  df-haus 23258  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-limc 25824  df-dv 25825  df-dvn 25826
This theorem is referenced by:  taylplem1  26327  taylply2  26332  taylply2OLD  26333  taylply  26334  taylthlem1  26338  taylthlem2  26339  taylthlem2OLD  26340
  Copyright terms: Public domain W3C validator