| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psmetxrge0 | Structured version Visualization version GIF version | ||
| Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
| Ref | Expression |
|---|---|
| psmetxrge0 | ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psmetf 24250 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 2 | 1 | ffnd 6712 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷 Fn (𝑋 × 𝑋)) |
| 3 | 1 | ffvelcdmda 7079 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) ∈ ℝ*) |
| 4 | elxp6 8027 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝑋 × 𝑋) ↔ (𝑎 = 〈(1st ‘𝑎), (2nd ‘𝑎)〉 ∧ ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋))) | |
| 5 | 4 | simprbi 496 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋)) |
| 6 | psmetge0 24256 | . . . . . . . 8 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) | |
| 7 | 6 | 3expb 1120 | . . . . . . 7 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋)) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 8 | 5, 7 | sylan2 593 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 9 | 1st2nd2 8032 | . . . . . . . . 9 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → 𝑎 = 〈(1st ‘𝑎), (2nd ‘𝑎)〉) | |
| 10 | 9 | fveq2d 6885 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → (𝐷‘𝑎) = (𝐷‘〈(1st ‘𝑎), (2nd ‘𝑎)〉)) |
| 11 | df-ov 7413 | . . . . . . . 8 ⊢ ((1st ‘𝑎)𝐷(2nd ‘𝑎)) = (𝐷‘〈(1st ‘𝑎), (2nd ‘𝑎)〉) | |
| 12 | 10, 11 | eqtr4di 2789 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → (𝐷‘𝑎) = ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) = ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 14 | 8, 13 | breqtrrd 5152 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ (𝐷‘𝑎)) |
| 15 | elxrge0 13479 | . . . . 5 ⊢ ((𝐷‘𝑎) ∈ (0[,]+∞) ↔ ((𝐷‘𝑎) ∈ ℝ* ∧ 0 ≤ (𝐷‘𝑎))) | |
| 16 | 3, 14, 15 | sylanbrc 583 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) ∈ (0[,]+∞)) |
| 17 | 16 | ralrimiva 3133 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷‘𝑎) ∈ (0[,]+∞)) |
| 18 | fnfvrnss 7116 | . . 3 ⊢ ((𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷‘𝑎) ∈ (0[,]+∞)) → ran 𝐷 ⊆ (0[,]+∞)) | |
| 19 | 2, 17, 18 | syl2anc 584 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ran 𝐷 ⊆ (0[,]+∞)) |
| 20 | df-f 6540 | . 2 ⊢ (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ran 𝐷 ⊆ (0[,]+∞))) | |
| 21 | 2, 19, 20 | sylanbrc 583 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⊆ wss 3931 〈cop 4612 class class class wbr 5124 × cxp 5657 ran crn 5660 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 2nd c2nd 7992 0cc0 11134 +∞cpnf 11271 ℝ*cxr 11273 ≤ cle 11275 [,]cicc 13370 PsMetcpsmet 21304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-2 12308 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-icc 13374 df-psmet 21312 |
| This theorem is referenced by: sitmcl 34388 |
| Copyright terms: Public domain | W3C validator |