![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psmetxrge0 | Structured version Visualization version GIF version |
Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
Ref | Expression |
---|---|
psmetxrge0 | β’ (π· β (PsMetβπ) β π·:(π Γ π)βΆ(0[,]+β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psmetf 24033 | . . 3 β’ (π· β (PsMetβπ) β π·:(π Γ π)βΆβ*) | |
2 | 1 | ffnd 6719 | . 2 β’ (π· β (PsMetβπ) β π· Fn (π Γ π)) |
3 | 1 | ffvelcdmda 7087 | . . . . 5 β’ ((π· β (PsMetβπ) β§ π β (π Γ π)) β (π·βπ) β β*) |
4 | elxp6 8012 | . . . . . . . 8 β’ (π β (π Γ π) β (π = β¨(1st βπ), (2nd βπ)β© β§ ((1st βπ) β π β§ (2nd βπ) β π))) | |
5 | 4 | simprbi 496 | . . . . . . 7 β’ (π β (π Γ π) β ((1st βπ) β π β§ (2nd βπ) β π)) |
6 | psmetge0 24039 | . . . . . . . 8 β’ ((π· β (PsMetβπ) β§ (1st βπ) β π β§ (2nd βπ) β π) β 0 β€ ((1st βπ)π·(2nd βπ))) | |
7 | 6 | 3expb 1119 | . . . . . . 7 β’ ((π· β (PsMetβπ) β§ ((1st βπ) β π β§ (2nd βπ) β π)) β 0 β€ ((1st βπ)π·(2nd βπ))) |
8 | 5, 7 | sylan2 592 | . . . . . 6 β’ ((π· β (PsMetβπ) β§ π β (π Γ π)) β 0 β€ ((1st βπ)π·(2nd βπ))) |
9 | 1st2nd2 8017 | . . . . . . . . 9 β’ (π β (π Γ π) β π = β¨(1st βπ), (2nd βπ)β©) | |
10 | 9 | fveq2d 6896 | . . . . . . . 8 β’ (π β (π Γ π) β (π·βπ) = (π·ββ¨(1st βπ), (2nd βπ)β©)) |
11 | df-ov 7415 | . . . . . . . 8 β’ ((1st βπ)π·(2nd βπ)) = (π·ββ¨(1st βπ), (2nd βπ)β©) | |
12 | 10, 11 | eqtr4di 2789 | . . . . . . 7 β’ (π β (π Γ π) β (π·βπ) = ((1st βπ)π·(2nd βπ))) |
13 | 12 | adantl 481 | . . . . . 6 β’ ((π· β (PsMetβπ) β§ π β (π Γ π)) β (π·βπ) = ((1st βπ)π·(2nd βπ))) |
14 | 8, 13 | breqtrrd 5177 | . . . . 5 β’ ((π· β (PsMetβπ) β§ π β (π Γ π)) β 0 β€ (π·βπ)) |
15 | elxrge0 13439 | . . . . 5 β’ ((π·βπ) β (0[,]+β) β ((π·βπ) β β* β§ 0 β€ (π·βπ))) | |
16 | 3, 14, 15 | sylanbrc 582 | . . . 4 β’ ((π· β (PsMetβπ) β§ π β (π Γ π)) β (π·βπ) β (0[,]+β)) |
17 | 16 | ralrimiva 3145 | . . 3 β’ (π· β (PsMetβπ) β βπ β (π Γ π)(π·βπ) β (0[,]+β)) |
18 | fnfvrnss 7123 | . . 3 β’ ((π· Fn (π Γ π) β§ βπ β (π Γ π)(π·βπ) β (0[,]+β)) β ran π· β (0[,]+β)) | |
19 | 2, 17, 18 | syl2anc 583 | . 2 β’ (π· β (PsMetβπ) β ran π· β (0[,]+β)) |
20 | df-f 6548 | . 2 β’ (π·:(π Γ π)βΆ(0[,]+β) β (π· Fn (π Γ π) β§ ran π· β (0[,]+β))) | |
21 | 2, 19, 20 | sylanbrc 582 | 1 β’ (π· β (PsMetβπ) β π·:(π Γ π)βΆ(0[,]+β)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 β wss 3949 β¨cop 4635 class class class wbr 5149 Γ cxp 5675 ran crn 5678 Fn wfn 6539 βΆwf 6540 βcfv 6544 (class class class)co 7412 1st c1st 7976 2nd c2nd 7977 0cc0 11113 +βcpnf 11250 β*cxr 11252 β€ cle 11254 [,]cicc 13332 PsMetcpsmet 21129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-2 12280 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-icc 13336 df-psmet 21137 |
This theorem is referenced by: sitmcl 33645 |
Copyright terms: Public domain | W3C validator |