| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psmetxrge0 | Structured version Visualization version GIF version | ||
| Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
| Ref | Expression |
|---|---|
| psmetxrge0 | ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psmetf 24210 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 2 | 1 | ffnd 6657 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷 Fn (𝑋 × 𝑋)) |
| 3 | 1 | ffvelcdmda 7022 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) ∈ ℝ*) |
| 4 | elxp6 7965 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝑋 × 𝑋) ↔ (𝑎 = 〈(1st ‘𝑎), (2nd ‘𝑎)〉 ∧ ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋))) | |
| 5 | 4 | simprbi 496 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋)) |
| 6 | psmetge0 24216 | . . . . . . . 8 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) | |
| 7 | 6 | 3expb 1120 | . . . . . . 7 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋)) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 8 | 5, 7 | sylan2 593 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 9 | 1st2nd2 7970 | . . . . . . . . 9 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → 𝑎 = 〈(1st ‘𝑎), (2nd ‘𝑎)〉) | |
| 10 | 9 | fveq2d 6830 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → (𝐷‘𝑎) = (𝐷‘〈(1st ‘𝑎), (2nd ‘𝑎)〉)) |
| 11 | df-ov 7356 | . . . . . . . 8 ⊢ ((1st ‘𝑎)𝐷(2nd ‘𝑎)) = (𝐷‘〈(1st ‘𝑎), (2nd ‘𝑎)〉) | |
| 12 | 10, 11 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → (𝐷‘𝑎) = ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) = ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
| 14 | 8, 13 | breqtrrd 5123 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ (𝐷‘𝑎)) |
| 15 | elxrge0 13378 | . . . . 5 ⊢ ((𝐷‘𝑎) ∈ (0[,]+∞) ↔ ((𝐷‘𝑎) ∈ ℝ* ∧ 0 ≤ (𝐷‘𝑎))) | |
| 16 | 3, 14, 15 | sylanbrc 583 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) ∈ (0[,]+∞)) |
| 17 | 16 | ralrimiva 3121 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷‘𝑎) ∈ (0[,]+∞)) |
| 18 | fnfvrnss 7059 | . . 3 ⊢ ((𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷‘𝑎) ∈ (0[,]+∞)) → ran 𝐷 ⊆ (0[,]+∞)) | |
| 19 | 2, 17, 18 | syl2anc 584 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ran 𝐷 ⊆ (0[,]+∞)) |
| 20 | df-f 6490 | . 2 ⊢ (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ran 𝐷 ⊆ (0[,]+∞))) | |
| 21 | 2, 19, 20 | sylanbrc 583 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3905 〈cop 4585 class class class wbr 5095 × cxp 5621 ran crn 5624 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 0cc0 11028 +∞cpnf 11165 ℝ*cxr 11167 ≤ cle 11169 [,]cicc 13269 PsMetcpsmet 21263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-2 12209 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-icc 13273 df-psmet 21271 |
| This theorem is referenced by: sitmcl 34318 |
| Copyright terms: Public domain | W3C validator |