Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psmetxrge0 | Structured version Visualization version GIF version |
Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
Ref | Expression |
---|---|
psmetxrge0 | ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psmetf 23455 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
2 | 1 | ffnd 6598 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷 Fn (𝑋 × 𝑋)) |
3 | 1 | ffvelrnda 6956 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) ∈ ℝ*) |
4 | elxp6 7856 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝑋 × 𝑋) ↔ (𝑎 = 〈(1st ‘𝑎), (2nd ‘𝑎)〉 ∧ ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋))) | |
5 | 4 | simprbi 497 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋)) |
6 | psmetge0 23461 | . . . . . . . 8 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) | |
7 | 6 | 3expb 1119 | . . . . . . 7 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ ((1st ‘𝑎) ∈ 𝑋 ∧ (2nd ‘𝑎) ∈ 𝑋)) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
8 | 5, 7 | sylan2 593 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
9 | 1st2nd2 7861 | . . . . . . . . 9 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → 𝑎 = 〈(1st ‘𝑎), (2nd ‘𝑎)〉) | |
10 | 9 | fveq2d 6773 | . . . . . . . 8 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → (𝐷‘𝑎) = (𝐷‘〈(1st ‘𝑎), (2nd ‘𝑎)〉)) |
11 | df-ov 7272 | . . . . . . . 8 ⊢ ((1st ‘𝑎)𝐷(2nd ‘𝑎)) = (𝐷‘〈(1st ‘𝑎), (2nd ‘𝑎)〉) | |
12 | 10, 11 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑋 × 𝑋) → (𝐷‘𝑎) = ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
13 | 12 | adantl 482 | . . . . . 6 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) = ((1st ‘𝑎)𝐷(2nd ‘𝑎))) |
14 | 8, 13 | breqtrrd 5107 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → 0 ≤ (𝐷‘𝑎)) |
15 | elxrge0 13186 | . . . . 5 ⊢ ((𝐷‘𝑎) ∈ (0[,]+∞) ↔ ((𝐷‘𝑎) ∈ ℝ* ∧ 0 ≤ (𝐷‘𝑎))) | |
16 | 3, 14, 15 | sylanbrc 583 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ (𝑋 × 𝑋)) → (𝐷‘𝑎) ∈ (0[,]+∞)) |
17 | 16 | ralrimiva 3110 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷‘𝑎) ∈ (0[,]+∞)) |
18 | fnfvrnss 6989 | . . 3 ⊢ ((𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑎 ∈ (𝑋 × 𝑋)(𝐷‘𝑎) ∈ (0[,]+∞)) → ran 𝐷 ⊆ (0[,]+∞)) | |
19 | 2, 17, 18 | syl2anc 584 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ran 𝐷 ⊆ (0[,]+∞)) |
20 | df-f 6435 | . 2 ⊢ (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ran 𝐷 ⊆ (0[,]+∞))) | |
21 | 2, 19, 20 | sylanbrc 583 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ⊆ wss 3892 〈cop 4573 class class class wbr 5079 × cxp 5587 ran crn 5590 Fn wfn 6426 ⟶wf 6427 ‘cfv 6431 (class class class)co 7269 1st c1st 7820 2nd c2nd 7821 0cc0 10870 +∞cpnf 11005 ℝ*cxr 11007 ≤ cle 11009 [,]cicc 13079 PsMetcpsmet 20577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-1st 7822 df-2nd 7823 df-er 8479 df-map 8598 df-en 8715 df-dom 8716 df-sdom 8717 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-div 11631 df-2 12034 df-rp 12728 df-xneg 12845 df-xadd 12846 df-xmul 12847 df-icc 13083 df-psmet 20585 |
This theorem is referenced by: sitmcl 32312 |
Copyright terms: Public domain | W3C validator |