Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idmon Structured version   Visualization version   GIF version

Theorem idmon 45913
Description: An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.)
Hypotheses
Ref Expression
idmon.b 𝐵 = (Base‘𝐶)
idmon.h 𝐻 = (Hom ‘𝐶)
idmon.i 1 = (Id‘𝐶)
idmon.c (𝜑𝐶 ∈ Cat)
idmon.x (𝜑𝑋𝐵)
idmon.m 𝑀 = (Mono‘𝐶)
Assertion
Ref Expression
idmon (𝜑 → ( 1𝑋) ∈ (𝑋𝑀𝑋))

Proof of Theorem idmon
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idmon.b . . 3 𝐵 = (Base‘𝐶)
2 idmon.h . . 3 𝐻 = (Hom ‘𝐶)
3 idmon.i . . 3 1 = (Id‘𝐶)
4 idmon.c . . 3 (𝜑𝐶 ∈ Cat)
5 idmon.x . . 3 (𝜑𝑋𝐵)
61, 2, 3, 4, 5catidcl 17139 . 2 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
74adantr 484 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat)
8 simpr1 1196 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝑧𝐵)
9 eqid 2736 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
105adantr 484 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝑋𝐵)
11 simpr2 1197 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋))
121, 2, 3, 7, 8, 9, 10, 11catlid 17140 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = 𝑔)
13 simpr3 1198 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → ∈ (𝑧𝐻𝑋))
141, 2, 3, 7, 8, 9, 10, 13catlid 17140 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) = )
1512, 14eqeq12d 2752 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → ((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) ↔ 𝑔 = ))
1615biimpd 232 . . 3 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → ((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) → 𝑔 = ))
1716ralrimivvva 3103 . 2 (𝜑 → ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) → 𝑔 = ))
18 idmon.m . . 3 𝑀 = (Mono‘𝐶)
191, 2, 9, 18, 4, 5, 5ismon2 17193 . 2 (𝜑 → (( 1𝑋) ∈ (𝑋𝑀𝑋) ↔ (( 1𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) → 𝑔 = ))))
206, 17, 19mpbir2and 713 1 (𝜑 → ( 1𝑋) ∈ (𝑋𝑀𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  cop 4533  cfv 6358  (class class class)co 7191  Basecbs 16666  Hom chom 16760  compcco 16761  Catccat 17121  Idccid 17122  Monocmon 17187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-cat 17125  df-cid 17126  df-mon 17189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator