Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idmon Structured version   Visualization version   GIF version

Theorem idmon 48683
Description: An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.)
Hypotheses
Ref Expression
idmon.b 𝐵 = (Base‘𝐶)
idmon.h 𝐻 = (Hom ‘𝐶)
idmon.i 1 = (Id‘𝐶)
idmon.c (𝜑𝐶 ∈ Cat)
idmon.x (𝜑𝑋𝐵)
idmon.m 𝑀 = (Mono‘𝐶)
Assertion
Ref Expression
idmon (𝜑 → ( 1𝑋) ∈ (𝑋𝑀𝑋))

Proof of Theorem idmon
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idmon.b . . 3 𝐵 = (Base‘𝐶)
2 idmon.h . . 3 𝐻 = (Hom ‘𝐶)
3 idmon.i . . 3 1 = (Id‘𝐶)
4 idmon.c . . 3 (𝜑𝐶 ∈ Cat)
5 idmon.x . . 3 (𝜑𝑋𝐵)
61, 2, 3, 4, 5catidcl 17740 . 2 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
74adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat)
8 simpr1 1194 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝑧𝐵)
9 eqid 2740 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
105adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝑋𝐵)
11 simpr2 1195 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋))
121, 2, 3, 7, 8, 9, 10, 11catlid 17741 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = 𝑔)
13 simpr3 1196 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → ∈ (𝑧𝐻𝑋))
141, 2, 3, 7, 8, 9, 10, 13catlid 17741 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) = )
1512, 14eqeq12d 2756 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → ((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) ↔ 𝑔 = ))
1615biimpd 229 . . 3 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → ((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) → 𝑔 = ))
1716ralrimivvva 3211 . 2 (𝜑 → ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) → 𝑔 = ))
18 idmon.m . . 3 𝑀 = (Mono‘𝐶)
191, 2, 9, 18, 4, 5, 5ismon2 17795 . 2 (𝜑 → (( 1𝑋) ∈ (𝑋𝑀𝑋) ↔ (( 1𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) → 𝑔 = ))))
206, 17, 19mpbir2and 712 1 (𝜑 → ( 1𝑋) ∈ (𝑋𝑀𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cop 4654  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Idccid 17723  Monocmon 17789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-cat 17726  df-cid 17727  df-mon 17791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator