![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idmon | Structured version Visualization version GIF version |
Description: An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
Ref | Expression |
---|---|
idmon.b | ⊢ 𝐵 = (Base‘𝐶) |
idmon.h | ⊢ 𝐻 = (Hom ‘𝐶) |
idmon.i | ⊢ 1 = (Id‘𝐶) |
idmon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
idmon.m | ⊢ 𝑀 = (Mono‘𝐶) |
Ref | Expression |
---|---|
idmon | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝑀𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idmon.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | idmon.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | idmon.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
4 | idmon.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | idmon.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | catidcl 17740 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
7 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat) |
8 | simpr1 1194 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑧 ∈ 𝐵) | |
9 | eqid 2740 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
10 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑋 ∈ 𝐵) |
11 | simpr2 1195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋)) | |
12 | 1, 2, 3, 7, 8, 9, 10, 11 | catlid 17741 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = 𝑔) |
13 | simpr3 1196 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ℎ ∈ (𝑧𝐻𝑋)) | |
14 | 1, 2, 3, 7, 8, 9, 10, 13 | catlid 17741 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) = ℎ) |
15 | 12, 14 | eqeq12d 2756 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) ↔ 𝑔 = ℎ)) |
16 | 15 | biimpd 229 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) → 𝑔 = ℎ)) |
17 | 16 | ralrimivvva 3211 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) → 𝑔 = ℎ)) |
18 | idmon.m | . . 3 ⊢ 𝑀 = (Mono‘𝐶) | |
19 | 1, 2, 9, 18, 4, 5, 5 | ismon2 17795 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋) ∈ (𝑋𝑀𝑋) ↔ (( 1 ‘𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) → 𝑔 = ℎ)))) |
20 | 6, 17, 19 | mpbir2and 712 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝑀𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 〈cop 4654 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Hom chom 17322 compcco 17323 Catccat 17722 Idccid 17723 Monocmon 17789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-cat 17726 df-cid 17727 df-mon 17791 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |