| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idmon | Structured version Visualization version GIF version | ||
| Description: An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
| Ref | Expression |
|---|---|
| idmon.b | ⊢ 𝐵 = (Base‘𝐶) |
| idmon.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| idmon.i | ⊢ 1 = (Id‘𝐶) |
| idmon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idmon.m | ⊢ 𝑀 = (Mono‘𝐶) |
| Ref | Expression |
|---|---|
| idmon | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝑀𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idmon.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | idmon.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | idmon.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 4 | idmon.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | idmon.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | catidcl 17649 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| 7 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat) |
| 8 | simpr1 1195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑧 ∈ 𝐵) | |
| 9 | eqid 2730 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 10 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑋 ∈ 𝐵) |
| 11 | simpr2 1196 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋)) | |
| 12 | 1, 2, 3, 7, 8, 9, 10, 11 | catlid 17650 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = 𝑔) |
| 13 | simpr3 1197 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ℎ ∈ (𝑧𝐻𝑋)) | |
| 14 | 1, 2, 3, 7, 8, 9, 10, 13 | catlid 17650 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) = ℎ) |
| 15 | 12, 14 | eqeq12d 2746 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) ↔ 𝑔 = ℎ)) |
| 16 | 15 | biimpd 229 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) → 𝑔 = ℎ)) |
| 17 | 16 | ralrimivvva 3185 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) → 𝑔 = ℎ)) |
| 18 | idmon.m | . . 3 ⊢ 𝑀 = (Mono‘𝐶) | |
| 19 | 1, 2, 9, 18, 4, 5, 5 | ismon2 17702 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋) ∈ (𝑋𝑀𝑋) ↔ (( 1 ‘𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) → 𝑔 = ℎ)))) |
| 20 | 6, 17, 19 | mpbir2and 713 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝑀𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3046 〈cop 4603 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 Hom chom 17237 compcco 17238 Catccat 17631 Idccid 17632 Monocmon 17696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-cat 17635 df-cid 17636 df-mon 17698 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |