Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idmon Structured version   Visualization version   GIF version

Theorem idmon 49145
Description: An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.)
Hypotheses
Ref Expression
idmon.b 𝐵 = (Base‘𝐶)
idmon.h 𝐻 = (Hom ‘𝐶)
idmon.i 1 = (Id‘𝐶)
idmon.c (𝜑𝐶 ∈ Cat)
idmon.x (𝜑𝑋𝐵)
idmon.m 𝑀 = (Mono‘𝐶)
Assertion
Ref Expression
idmon (𝜑 → ( 1𝑋) ∈ (𝑋𝑀𝑋))

Proof of Theorem idmon
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idmon.b . . 3 𝐵 = (Base‘𝐶)
2 idmon.h . . 3 𝐻 = (Hom ‘𝐶)
3 idmon.i . . 3 1 = (Id‘𝐶)
4 idmon.c . . 3 (𝜑𝐶 ∈ Cat)
5 idmon.x . . 3 (𝜑𝑋𝐵)
61, 2, 3, 4, 5catidcl 17590 . 2 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
74adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat)
8 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝑧𝐵)
9 eqid 2733 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
105adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝑋𝐵)
11 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋))
121, 2, 3, 7, 8, 9, 10, 11catlid 17591 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = 𝑔)
13 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → ∈ (𝑧𝐻𝑋))
141, 2, 3, 7, 8, 9, 10, 13catlid 17591 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) = )
1512, 14eqeq12d 2749 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → ((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) ↔ 𝑔 = ))
1615biimpd 229 . . 3 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → ((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) → 𝑔 = ))
1716ralrimivvva 3179 . 2 (𝜑 → ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) → 𝑔 = ))
18 idmon.m . . 3 𝑀 = (Mono‘𝐶)
191, 2, 9, 18, 4, 5, 5ismon2 17643 . 2 (𝜑 → (( 1𝑋) ∈ (𝑋𝑀𝑋) ↔ (( 1𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) → 𝑔 = ))))
206, 17, 19mpbir2and 713 1 (𝜑 → ( 1𝑋) ∈ (𝑋𝑀𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  cop 4581  cfv 6486  (class class class)co 7352  Basecbs 17122  Hom chom 17174  compcco 17175  Catccat 17572  Idccid 17573  Monocmon 17637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-cat 17576  df-cid 17577  df-mon 17639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator