| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idmon | Structured version Visualization version GIF version | ||
| Description: An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
| Ref | Expression |
|---|---|
| idmon.b | ⊢ 𝐵 = (Base‘𝐶) |
| idmon.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| idmon.i | ⊢ 1 = (Id‘𝐶) |
| idmon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idmon.m | ⊢ 𝑀 = (Mono‘𝐶) |
| Ref | Expression |
|---|---|
| idmon | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝑀𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idmon.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | idmon.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | idmon.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
| 4 | idmon.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | idmon.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | catidcl 17590 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
| 7 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat) |
| 8 | simpr1 1195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑧 ∈ 𝐵) | |
| 9 | eqid 2733 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 10 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑋 ∈ 𝐵) |
| 11 | simpr2 1196 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋)) | |
| 12 | 1, 2, 3, 7, 8, 9, 10, 11 | catlid 17591 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = 𝑔) |
| 13 | simpr3 1197 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ℎ ∈ (𝑧𝐻𝑋)) | |
| 14 | 1, 2, 3, 7, 8, 9, 10, 13 | catlid 17591 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) = ℎ) |
| 15 | 12, 14 | eqeq12d 2749 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) ↔ 𝑔 = ℎ)) |
| 16 | 15 | biimpd 229 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) → 𝑔 = ℎ)) |
| 17 | 16 | ralrimivvva 3179 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) → 𝑔 = ℎ)) |
| 18 | idmon.m | . . 3 ⊢ 𝑀 = (Mono‘𝐶) | |
| 19 | 1, 2, 9, 18, 4, 5, 5 | ismon2 17643 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋) ∈ (𝑋𝑀𝑋) ↔ (( 1 ‘𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) → 𝑔 = ℎ)))) |
| 20 | 6, 17, 19 | mpbir2and 713 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝑀𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 〈cop 4581 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Hom chom 17174 compcco 17175 Catccat 17572 Idccid 17573 Monocmon 17637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-cat 17576 df-cid 17577 df-mon 17639 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |