Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idmon Structured version   Visualization version   GIF version

Theorem idmon 49013
Description: An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.)
Hypotheses
Ref Expression
idmon.b 𝐵 = (Base‘𝐶)
idmon.h 𝐻 = (Hom ‘𝐶)
idmon.i 1 = (Id‘𝐶)
idmon.c (𝜑𝐶 ∈ Cat)
idmon.x (𝜑𝑋𝐵)
idmon.m 𝑀 = (Mono‘𝐶)
Assertion
Ref Expression
idmon (𝜑 → ( 1𝑋) ∈ (𝑋𝑀𝑋))

Proof of Theorem idmon
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idmon.b . . 3 𝐵 = (Base‘𝐶)
2 idmon.h . . 3 𝐻 = (Hom ‘𝐶)
3 idmon.i . . 3 1 = (Id‘𝐶)
4 idmon.c . . 3 (𝜑𝐶 ∈ Cat)
5 idmon.x . . 3 (𝜑𝑋𝐵)
61, 2, 3, 4, 5catidcl 17650 . 2 (𝜑 → ( 1𝑋) ∈ (𝑋𝐻𝑋))
74adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat)
8 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝑧𝐵)
9 eqid 2730 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
105adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝑋𝐵)
11 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋))
121, 2, 3, 7, 8, 9, 10, 11catlid 17651 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = 𝑔)
13 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → ∈ (𝑧𝐻𝑋))
141, 2, 3, 7, 8, 9, 10, 13catlid 17651 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) = )
1512, 14eqeq12d 2746 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → ((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) ↔ 𝑔 = ))
1615biimpd 229 . . 3 ((𝜑 ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋) ∧ ∈ (𝑧𝐻𝑋))) → ((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) → 𝑔 = ))
1716ralrimivvva 3184 . 2 (𝜑 → ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) → 𝑔 = ))
18 idmon.m . . 3 𝑀 = (Mono‘𝐶)
191, 2, 9, 18, 4, 5, 5ismon2 17703 . 2 (𝜑 → (( 1𝑋) ∈ (𝑋𝑀𝑋) ↔ (( 1𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)𝑔) = (( 1𝑋)(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑋)) → 𝑔 = ))))
206, 17, 19mpbir2and 713 1 (𝜑 → ( 1𝑋) ∈ (𝑋𝑀𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cop 4598  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Idccid 17633  Monocmon 17697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-cat 17636  df-cid 17637  df-mon 17699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator