![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idmon | Structured version Visualization version GIF version |
Description: An identity arrow, or an identity morphism, is a monomorphism. (Contributed by Zhi Wang, 21-Sep-2024.) |
Ref | Expression |
---|---|
idmon.b | ⊢ 𝐵 = (Base‘𝐶) |
idmon.h | ⊢ 𝐻 = (Hom ‘𝐶) |
idmon.i | ⊢ 1 = (Id‘𝐶) |
idmon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
idmon.m | ⊢ 𝑀 = (Mono‘𝐶) |
Ref | Expression |
---|---|
idmon | ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝑀𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idmon.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | idmon.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | idmon.i | . . 3 ⊢ 1 = (Id‘𝐶) | |
4 | idmon.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | idmon.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | catidcl 17727 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
7 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat) |
8 | simpr1 1193 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑧 ∈ 𝐵) | |
9 | eqid 2735 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
10 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑋 ∈ 𝐵) |
11 | simpr2 1194 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋)) | |
12 | 1, 2, 3, 7, 8, 9, 10, 11 | catlid 17728 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = 𝑔) |
13 | simpr3 1195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ℎ ∈ (𝑧𝐻𝑋)) | |
14 | 1, 2, 3, 7, 8, 9, 10, 13 | catlid 17728 | . . . . 5 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) = ℎ) |
15 | 12, 14 | eqeq12d 2751 | . . . 4 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) ↔ 𝑔 = ℎ)) |
16 | 15 | biimpd 229 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑧𝐻𝑋) ∧ ℎ ∈ (𝑧𝐻𝑋))) → ((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) → 𝑔 = ℎ)) |
17 | 16 | ralrimivvva 3203 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) → 𝑔 = ℎ)) |
18 | idmon.m | . . 3 ⊢ 𝑀 = (Mono‘𝐶) | |
19 | 1, 2, 9, 18, 4, 5, 5 | ismon2 17782 | . 2 ⊢ (𝜑 → (( 1 ‘𝑋) ∈ (𝑋𝑀𝑋) ↔ (( 1 ‘𝑋) ∈ (𝑋𝐻𝑋) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑧𝐻𝑋)∀ℎ ∈ (𝑧𝐻𝑋)((( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)𝑔) = (( 1 ‘𝑋)(〈𝑧, 𝑋〉(comp‘𝐶)𝑋)ℎ) → 𝑔 = ℎ)))) |
20 | 6, 17, 19 | mpbir2and 713 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝑀𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 〈cop 4637 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 Hom chom 17309 compcco 17310 Catccat 17709 Idccid 17710 Monocmon 17776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-cat 17713 df-cid 17714 df-mon 17778 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |