| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bcn1 | Structured version Visualization version GIF version | ||
| Description: Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
| Ref | Expression |
|---|---|
| bcn1 | ⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12420 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | 1eluzge0 12815 | . . . . . . 7 ⊢ 1 ∈ (ℤ≥‘0) | |
| 3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ∈ (ℤ≥‘0)) |
| 4 | elnnuz 12813 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
| 5 | 4 | biimpi 216 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
| 6 | elfzuzb 13455 | . . . . . 6 ⊢ (1 ∈ (0...𝑁) ↔ (1 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘1))) | |
| 7 | 3, 5, 6 | sylanbrc 583 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 ∈ (0...𝑁)) |
| 8 | bcval2 14246 | . . . . 5 ⊢ (1 ∈ (0...𝑁) → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1)))) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1)))) |
| 10 | facnn2 14223 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁)) | |
| 11 | fac1 14218 | . . . . . . 7 ⊢ (!‘1) = 1 | |
| 12 | 11 | oveq2i 7380 | . . . . . 6 ⊢ ((!‘(𝑁 − 1)) · (!‘1)) = ((!‘(𝑁 − 1)) · 1) |
| 13 | nnm1nn0 12459 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
| 14 | 13 | faccld 14225 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ) |
| 15 | 14 | nncnd 12178 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℂ) |
| 16 | 15 | mulridd 11167 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · 1) = (!‘(𝑁 − 1))) |
| 17 | 12, 16 | eqtrid 2776 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘1)) = (!‘(𝑁 − 1))) |
| 18 | 10, 17 | oveq12d 7387 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))) = (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1)))) |
| 19 | nncn 12170 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 20 | 14 | nnne0d 12212 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ≠ 0) |
| 21 | 19, 15, 20 | divcan3d 11939 | . . . 4 ⊢ (𝑁 ∈ ℕ → (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))) = 𝑁) |
| 22 | 9, 18, 21 | 3eqtrd 2768 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁C1) = 𝑁) |
| 23 | 0nn0 12433 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 24 | 1z 12539 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 25 | 0lt1 11676 | . . . . . 6 ⊢ 0 < 1 | |
| 26 | 25 | olci 866 | . . . . 5 ⊢ (1 < 0 ∨ 0 < 1) |
| 27 | bcval4 14248 | . . . . 5 ⊢ ((0 ∈ ℕ0 ∧ 1 ∈ ℤ ∧ (1 < 0 ∨ 0 < 1)) → (0C1) = 0) | |
| 28 | 23, 24, 26, 27 | mp3an 1463 | . . . 4 ⊢ (0C1) = 0 |
| 29 | oveq1 7376 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁C1) = (0C1)) | |
| 30 | eqeq12 2746 | . . . . 5 ⊢ (((𝑁C1) = (0C1) ∧ 𝑁 = 0) → ((𝑁C1) = 𝑁 ↔ (0C1) = 0)) | |
| 31 | 29, 30 | mpancom 688 | . . . 4 ⊢ (𝑁 = 0 → ((𝑁C1) = 𝑁 ↔ (0C1) = 0)) |
| 32 | 28, 31 | mpbiri 258 | . . 3 ⊢ (𝑁 = 0 → (𝑁C1) = 𝑁) |
| 33 | 22, 32 | jaoi 857 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁C1) = 𝑁) |
| 34 | 1, 33 | sylbi 217 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 · cmul 11049 < clt 11184 − cmin 11381 / cdiv 11811 ℕcn 12162 ℕ0cn0 12418 ℤcz 12505 ℤ≥cuz 12769 ...cfz 13444 !cfa 14214 Ccbc 14243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-seq 13943 df-fac 14215 df-bc 14244 |
| This theorem is referenced by: bcnp1n 14255 bcn2m1 14265 bcn2p1 14266 bcnm1 14268 bpoly2 15999 bpoly3 16000 bpoly4 16001 lcmineqlem12 42021 5bc2eq10 42123 jm2.23 42978 |
| Copyright terms: Public domain | W3C validator |