Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bcn1 | Structured version Visualization version GIF version |
Description: Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
Ref | Expression |
---|---|
bcn1 | ⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12235 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | 1eluzge0 12632 | . . . . . . 7 ⊢ 1 ∈ (ℤ≥‘0) | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ∈ (ℤ≥‘0)) |
4 | elnnuz 12622 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
5 | 4 | biimpi 215 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
6 | elfzuzb 13250 | . . . . . 6 ⊢ (1 ∈ (0...𝑁) ↔ (1 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘1))) | |
7 | 3, 5, 6 | sylanbrc 583 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 ∈ (0...𝑁)) |
8 | bcval2 14019 | . . . . 5 ⊢ (1 ∈ (0...𝑁) → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1)))) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1)))) |
10 | facnn2 13996 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁)) | |
11 | fac1 13991 | . . . . . . 7 ⊢ (!‘1) = 1 | |
12 | 11 | oveq2i 7286 | . . . . . 6 ⊢ ((!‘(𝑁 − 1)) · (!‘1)) = ((!‘(𝑁 − 1)) · 1) |
13 | nnm1nn0 12274 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
14 | 13 | faccld 13998 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ) |
15 | 14 | nncnd 11989 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℂ) |
16 | 15 | mulid1d 10992 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · 1) = (!‘(𝑁 − 1))) |
17 | 12, 16 | eqtrid 2790 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘1)) = (!‘(𝑁 − 1))) |
18 | 10, 17 | oveq12d 7293 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))) = (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1)))) |
19 | nncn 11981 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
20 | 14 | nnne0d 12023 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ≠ 0) |
21 | 19, 15, 20 | divcan3d 11756 | . . . 4 ⊢ (𝑁 ∈ ℕ → (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))) = 𝑁) |
22 | 9, 18, 21 | 3eqtrd 2782 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁C1) = 𝑁) |
23 | 0nn0 12248 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
24 | 1z 12350 | . . . . 5 ⊢ 1 ∈ ℤ | |
25 | 0lt1 11497 | . . . . . 6 ⊢ 0 < 1 | |
26 | 25 | olci 863 | . . . . 5 ⊢ (1 < 0 ∨ 0 < 1) |
27 | bcval4 14021 | . . . . 5 ⊢ ((0 ∈ ℕ0 ∧ 1 ∈ ℤ ∧ (1 < 0 ∨ 0 < 1)) → (0C1) = 0) | |
28 | 23, 24, 26, 27 | mp3an 1460 | . . . 4 ⊢ (0C1) = 0 |
29 | oveq1 7282 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁C1) = (0C1)) | |
30 | eqeq12 2755 | . . . . 5 ⊢ (((𝑁C1) = (0C1) ∧ 𝑁 = 0) → ((𝑁C1) = 𝑁 ↔ (0C1) = 0)) | |
31 | 29, 30 | mpancom 685 | . . . 4 ⊢ (𝑁 = 0 → ((𝑁C1) = 𝑁 ↔ (0C1) = 0)) |
32 | 28, 31 | mpbiri 257 | . . 3 ⊢ (𝑁 = 0 → (𝑁C1) = 𝑁) |
33 | 22, 32 | jaoi 854 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁C1) = 𝑁) |
34 | 1, 33 | sylbi 216 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 · cmul 10876 < clt 11009 − cmin 11205 / cdiv 11632 ℕcn 11973 ℕ0cn0 12233 ℤcz 12319 ℤ≥cuz 12582 ...cfz 13239 !cfa 13987 Ccbc 14016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-seq 13722 df-fac 13988 df-bc 14017 |
This theorem is referenced by: bcnp1n 14028 bcn2m1 14038 bcn2p1 14039 bcnm1 14041 bpoly2 15767 bpoly3 15768 bpoly4 15769 lcmineqlem12 40048 5bc2eq10 40098 jm2.23 40818 |
Copyright terms: Public domain | W3C validator |