Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bcn1 | Structured version Visualization version GIF version |
Description: Binomial coefficient: 𝑁 choose 1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.) |
Ref | Expression |
---|---|
bcn1 | ⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 11936 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | 1eluzge0 12332 | . . . . . . 7 ⊢ 1 ∈ (ℤ≥‘0) | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ∈ (ℤ≥‘0)) |
4 | elnnuz 12322 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (ℤ≥‘1)) | |
5 | 4 | biimpi 219 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ (ℤ≥‘1)) |
6 | elfzuzb 12950 | . . . . . 6 ⊢ (1 ∈ (0...𝑁) ↔ (1 ∈ (ℤ≥‘0) ∧ 𝑁 ∈ (ℤ≥‘1))) | |
7 | 3, 5, 6 | sylanbrc 586 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 ∈ (0...𝑁)) |
8 | bcval2 13715 | . . . . 5 ⊢ (1 ∈ (0...𝑁) → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1)))) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁C1) = ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1)))) |
10 | facnn2 13692 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘𝑁) = ((!‘(𝑁 − 1)) · 𝑁)) | |
11 | fac1 13687 | . . . . . . 7 ⊢ (!‘1) = 1 | |
12 | 11 | oveq2i 7161 | . . . . . 6 ⊢ ((!‘(𝑁 − 1)) · (!‘1)) = ((!‘(𝑁 − 1)) · 1) |
13 | nnm1nn0 11975 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
14 | 13 | faccld 13694 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℕ) |
15 | 14 | nncnd 11690 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ∈ ℂ) |
16 | 15 | mulid1d 10696 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · 1) = (!‘(𝑁 − 1))) |
17 | 12, 16 | syl5eq 2805 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((!‘(𝑁 − 1)) · (!‘1)) = (!‘(𝑁 − 1))) |
18 | 10, 17 | oveq12d 7168 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((!‘𝑁) / ((!‘(𝑁 − 1)) · (!‘1))) = (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1)))) |
19 | nncn 11682 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
20 | 14 | nnne0d 11724 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (!‘(𝑁 − 1)) ≠ 0) |
21 | 19, 15, 20 | divcan3d 11459 | . . . 4 ⊢ (𝑁 ∈ ℕ → (((!‘(𝑁 − 1)) · 𝑁) / (!‘(𝑁 − 1))) = 𝑁) |
22 | 9, 18, 21 | 3eqtrd 2797 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁C1) = 𝑁) |
23 | 0nn0 11949 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
24 | 1z 12051 | . . . . 5 ⊢ 1 ∈ ℤ | |
25 | 0lt1 11200 | . . . . . 6 ⊢ 0 < 1 | |
26 | 25 | olci 863 | . . . . 5 ⊢ (1 < 0 ∨ 0 < 1) |
27 | bcval4 13717 | . . . . 5 ⊢ ((0 ∈ ℕ0 ∧ 1 ∈ ℤ ∧ (1 < 0 ∨ 0 < 1)) → (0C1) = 0) | |
28 | 23, 24, 26, 27 | mp3an 1458 | . . . 4 ⊢ (0C1) = 0 |
29 | oveq1 7157 | . . . . 5 ⊢ (𝑁 = 0 → (𝑁C1) = (0C1)) | |
30 | eqeq12 2772 | . . . . 5 ⊢ (((𝑁C1) = (0C1) ∧ 𝑁 = 0) → ((𝑁C1) = 𝑁 ↔ (0C1) = 0)) | |
31 | 29, 30 | mpancom 687 | . . . 4 ⊢ (𝑁 = 0 → ((𝑁C1) = 𝑁 ↔ (0C1) = 0)) |
32 | 28, 31 | mpbiri 261 | . . 3 ⊢ (𝑁 = 0 → (𝑁C1) = 𝑁) |
33 | 22, 32 | jaoi 854 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑁C1) = 𝑁) |
34 | 1, 33 | sylbi 220 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∨ wo 844 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 0cc0 10575 1c1 10576 · cmul 10580 < clt 10713 − cmin 10908 / cdiv 11335 ℕcn 11674 ℕ0cn0 11934 ℤcz 12020 ℤ≥cuz 12282 ...cfz 12939 !cfa 13683 Ccbc 13712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-seq 13419 df-fac 13684 df-bc 13713 |
This theorem is referenced by: bcnp1n 13724 bcn2m1 13734 bcn2p1 13735 bcnm1 13737 bpoly2 15459 bpoly3 15460 bpoly4 15461 lcmineqlem12 39607 5bc2eq10 39643 jm2.23 40310 |
Copyright terms: Public domain | W3C validator |