MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringinvnz1ne0 Structured version   Visualization version   GIF version

Theorem ringinvnz1ne0 20325
Description: In a unital ring, a left invertible element is different from zero iff 10. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringinvnzdiv.b 𝐵 = (Base‘𝑅)
ringinvnzdiv.t · = (.r𝑅)
ringinvnzdiv.u 1 = (1r𝑅)
ringinvnzdiv.z 0 = (0g𝑅)
ringinvnzdiv.r (𝜑𝑅 ∈ Ring)
ringinvnzdiv.x (𝜑𝑋𝐵)
ringinvnzdiv.a (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
Assertion
Ref Expression
ringinvnz1ne0 (𝜑 → (𝑋010 ))
Distinct variable groups:   𝑋,𝑎   0 ,𝑎   1 ,𝑎   · ,𝑎   𝜑,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)

Proof of Theorem ringinvnz1ne0
StepHypRef Expression
1 oveq2 7458 . . . . 5 (𝑋 = 0 → (𝑎 · 𝑋) = (𝑎 · 0 ))
2 ringinvnzdiv.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
3 ringinvnzdiv.b . . . . . . . 8 𝐵 = (Base‘𝑅)
4 ringinvnzdiv.t . . . . . . . 8 · = (.r𝑅)
5 ringinvnzdiv.z . . . . . . . 8 0 = (0g𝑅)
63, 4, 5ringrz 20319 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎 · 0 ) = 0 )
72, 6sylan 579 . . . . . 6 ((𝜑𝑎𝐵) → (𝑎 · 0 ) = 0 )
8 eqeq12 2757 . . . . . . . 8 (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) ↔ 1 = 0 ))
98biimpd 229 . . . . . . 7 (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 ))
109ex 412 . . . . . 6 ((𝑎 · 𝑋) = 1 → ((𝑎 · 0 ) = 0 → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 )))
117, 10mpan9 506 . . . . 5 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 ))
121, 11syl5 34 . . . 4 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 01 = 0 ))
13 oveq2 7458 . . . . 5 ( 1 = 0 → (𝑋 · 1 ) = (𝑋 · 0 ))
14 ringinvnzdiv.x . . . . . . 7 (𝜑𝑋𝐵)
15 ringinvnzdiv.u . . . . . . . . . 10 1 = (1r𝑅)
163, 4, 15ringridm 20295 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
173, 4, 5ringrz 20319 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
1816, 17eqeq12d 2756 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) ↔ 𝑋 = 0 ))
1918biimpd 229 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
202, 14, 19syl2anc 583 . . . . . 6 (𝜑 → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
2120ad2antrr 725 . . . . 5 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
2213, 21syl5 34 . . . 4 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 = 0𝑋 = 0 ))
2312, 22impbid 212 . . 3 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 01 = 0 ))
24 ringinvnzdiv.a . . 3 (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
2523, 24r19.29a 3168 . 2 (𝜑 → (𝑋 = 01 = 0 ))
2625necon3bid 2991 1 (𝜑 → (𝑋010 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cfv 6575  (class class class)co 7450  Basecbs 17260  .rcmulr 17314  0gc0g 17501  1rcur 20210  Ringcrg 20262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-plusg 17326  df-0g 17503  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-grp 18978  df-minusg 18979  df-cmn 19826  df-abl 19827  df-mgp 20164  df-rng 20182  df-ur 20211  df-ring 20264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator