Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringinvnz1ne0 Structured version   Visualization version   GIF version

Theorem ringinvnz1ne0 19359
 Description: In a unitary ring, a left invertible element is different from zero iff 1 ≠ 0. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringinvnzdiv.b 𝐵 = (Base‘𝑅)
ringinvnzdiv.t · = (.r𝑅)
ringinvnzdiv.u 1 = (1r𝑅)
ringinvnzdiv.z 0 = (0g𝑅)
ringinvnzdiv.r (𝜑𝑅 ∈ Ring)
ringinvnzdiv.x (𝜑𝑋𝐵)
ringinvnzdiv.a (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
Assertion
Ref Expression
ringinvnz1ne0 (𝜑 → (𝑋010 ))
Distinct variable groups:   𝑋,𝑎   0 ,𝑎   1 ,𝑎   · ,𝑎   𝜑,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)

Proof of Theorem ringinvnz1ne0
StepHypRef Expression
1 oveq2 7153 . . . . 5 (𝑋 = 0 → (𝑎 · 𝑋) = (𝑎 · 0 ))
2 ringinvnzdiv.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
3 ringinvnzdiv.b . . . . . . . 8 𝐵 = (Base‘𝑅)
4 ringinvnzdiv.t . . . . . . . 8 · = (.r𝑅)
5 ringinvnzdiv.z . . . . . . . 8 0 = (0g𝑅)
63, 4, 5ringrz 19355 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎 · 0 ) = 0 )
72, 6sylan 583 . . . . . 6 ((𝜑𝑎𝐵) → (𝑎 · 0 ) = 0 )
8 eqeq12 2812 . . . . . . . 8 (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) ↔ 1 = 0 ))
98biimpd 232 . . . . . . 7 (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 ))
109ex 416 . . . . . 6 ((𝑎 · 𝑋) = 1 → ((𝑎 · 0 ) = 0 → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 )))
117, 10mpan9 510 . . . . 5 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 ))
121, 11syl5 34 . . . 4 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 01 = 0 ))
13 oveq2 7153 . . . . 5 ( 1 = 0 → (𝑋 · 1 ) = (𝑋 · 0 ))
14 ringinvnzdiv.x . . . . . . 7 (𝜑𝑋𝐵)
15 ringinvnzdiv.u . . . . . . . . . 10 1 = (1r𝑅)
163, 4, 15ringridm 19339 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
173, 4, 5ringrz 19355 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
1816, 17eqeq12d 2814 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) ↔ 𝑋 = 0 ))
1918biimpd 232 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
202, 14, 19syl2anc 587 . . . . . 6 (𝜑 → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
2120ad2antrr 725 . . . . 5 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
2213, 21syl5 34 . . . 4 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 = 0𝑋 = 0 ))
2312, 22impbid 215 . . 3 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 01 = 0 ))
24 ringinvnzdiv.a . . 3 (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
2523, 24r19.29a 3249 . 2 (𝜑 → (𝑋 = 01 = 0 ))
2625necon3bid 3031 1 (𝜑 → (𝑋010 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∃wrex 3107  ‘cfv 6332  (class class class)co 7145  Basecbs 16495  .rcmulr 16578  0gc0g 16725  1rcur 19265  Ringcrg 19311 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-plusg 16590  df-0g 16727  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-grp 18118  df-mgp 19254  df-ur 19266  df-ring 19313 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator