MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mat1ov Structured version   Visualization version   GIF version

Theorem mat1ov 20473
Description: Entries of an identity matrix, deduction form. (Contributed by Stefan O'Rear, 10-Jul-2018.)
Hypotheses
Ref Expression
mat1.a 𝐴 = (𝑁 Mat 𝑅)
mat1.o 1 = (1r𝑅)
mat1.z 0 = (0g𝑅)
mat1ov.n (𝜑𝑁 ∈ Fin)
mat1ov.r (𝜑𝑅 ∈ Ring)
mat1ov.i (𝜑𝐼𝑁)
mat1ov.j (𝜑𝐽𝑁)
mat1ov.u 𝑈 = (1r𝐴)
Assertion
Ref Expression
mat1ov (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, 1 , 0 ))

Proof of Theorem mat1ov
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mat1ov.u . . 3 𝑈 = (1r𝐴)
2 mat1ov.n . . . 4 (𝜑𝑁 ∈ Fin)
3 mat1ov.r . . . 4 (𝜑𝑅 ∈ Ring)
4 mat1.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 mat1.o . . . . 5 1 = (1r𝑅)
6 mat1.z . . . . 5 0 = (0g𝑅)
74, 5, 6mat1 20472 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))
82, 3, 7syl2anc 575 . . 3 (𝜑 → (1r𝐴) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))
91, 8syl5eq 2863 . 2 (𝜑𝑈 = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 )))
10 eqeq12 2830 . . . 4 ((𝑖 = 𝐼𝑗 = 𝐽) → (𝑖 = 𝑗𝐼 = 𝐽))
1110ifbid 4312 . . 3 ((𝑖 = 𝐼𝑗 = 𝐽) → if(𝑖 = 𝑗, 1 , 0 ) = if(𝐼 = 𝐽, 1 , 0 ))
1211adantl 469 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑗 = 𝐽)) → if(𝑖 = 𝑗, 1 , 0 ) = if(𝐼 = 𝐽, 1 , 0 ))
13 mat1ov.i . 2 (𝜑𝐼𝑁)
14 mat1ov.j . 2 (𝜑𝐽𝑁)
155fvexi 6429 . . . 4 1 ∈ V
166fvexi 6429 . . . 4 0 ∈ V
1715, 16ifex 4338 . . 3 if(𝐼 = 𝐽, 1 , 0 ) ∈ V
1817a1i 11 . 2 (𝜑 → if(𝐼 = 𝐽, 1 , 0 ) ∈ V)
199, 12, 13, 14, 18ovmpt2d 7025 1 (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2157  Vcvv 3402  ifcif 4290  cfv 6108  (class class class)co 6881  cmpt2 6883  Fincfn 8199  0gc0g 16312  1rcur 18710  Ringcrg 18756   Mat cmat 20431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4975  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186  ax-inf2 8792  ax-cnex 10284  ax-resscn 10285  ax-1cn 10286  ax-icn 10287  ax-addcl 10288  ax-addrcl 10289  ax-mulcl 10290  ax-mulrcl 10291  ax-mulcom 10292  ax-addass 10293  ax-mulass 10294  ax-distr 10295  ax-i2m1 10296  ax-1ne0 10297  ax-1rid 10298  ax-rnegex 10299  ax-rrecex 10300  ax-cnre 10301  ax-pre-lttri 10302  ax-pre-lttrn 10303  ax-pre-ltadd 10304  ax-pre-mulgt0 10305
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-ot 4390  df-uni 4642  df-int 4681  df-iun 4725  df-iin 4726  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5230  df-eprel 5235  df-po 5243  df-so 5244  df-fr 5281  df-se 5282  df-we 5283  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-rn 5333  df-res 5334  df-ima 5335  df-pred 5904  df-ord 5950  df-on 5951  df-lim 5952  df-suc 5953  df-iota 6071  df-fun 6110  df-fn 6111  df-f 6112  df-f1 6113  df-fo 6114  df-f1o 6115  df-fv 6116  df-isom 6117  df-riota 6842  df-ov 6884  df-oprab 6885  df-mpt2 6886  df-of 7134  df-om 7303  df-1st 7405  df-2nd 7406  df-supp 7537  df-wrecs 7649  df-recs 7711  df-rdg 7749  df-1o 7803  df-oadd 7807  df-er 7986  df-map 8101  df-ixp 8153  df-en 8200  df-dom 8201  df-sdom 8202  df-fin 8203  df-fsupp 8522  df-sup 8594  df-oi 8661  df-card 9055  df-pnf 10368  df-mnf 10369  df-xr 10370  df-ltxr 10371  df-le 10372  df-sub 10560  df-neg 10561  df-nn 11313  df-2 11371  df-3 11372  df-4 11373  df-5 11374  df-6 11375  df-7 11376  df-8 11377  df-9 11378  df-n0 11567  df-z 11651  df-dec 11767  df-uz 11912  df-fz 12557  df-fzo 12697  df-seq 13032  df-hash 13345  df-struct 16077  df-ndx 16078  df-slot 16079  df-base 16081  df-sets 16082  df-ress 16083  df-plusg 16173  df-mulr 16174  df-sca 16176  df-vsca 16177  df-ip 16178  df-tset 16179  df-ple 16180  df-ds 16182  df-hom 16184  df-cco 16185  df-0g 16314  df-gsum 16315  df-prds 16320  df-pws 16322  df-mre 16458  df-mrc 16459  df-acs 16461  df-mgm 17454  df-sgrp 17496  df-mnd 17507  df-mhm 17547  df-submnd 17548  df-grp 17637  df-minusg 17638  df-sbg 17639  df-mulg 17753  df-subg 17800  df-ghm 17867  df-cntz 17958  df-cmn 18403  df-abl 18404  df-mgp 18699  df-ur 18711  df-ring 18758  df-subrg 18989  df-lmod 19076  df-lss 19144  df-sra 19388  df-rgmod 19389  df-dsmm 20294  df-frlm 20309  df-mamu 20408  df-mat 20432
This theorem is referenced by:  dmatid  20520  scmatscmide  20532  ma1repveval  20596  1marepvmarrepid  20600  1marepvsma1  20608  mdet1  20626  mdetunilem8  20644  pmat1ovd  20723  mat2pmat1  20758  chpmat1dlem  20861  chpdmatlem2  20865  chpdmatlem3  20866  chpidmat  20873  1smat1  30205  matunitlindflem2  33725
  Copyright terms: Public domain W3C validator