Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mat1ov | Structured version Visualization version GIF version |
Description: Entries of an identity matrix, deduction form. (Contributed by Stefan O'Rear, 10-Jul-2018.) |
Ref | Expression |
---|---|
mat1.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mat1.o | ⊢ 1 = (1r‘𝑅) |
mat1.z | ⊢ 0 = (0g‘𝑅) |
mat1ov.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mat1ov.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mat1ov.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
mat1ov.j | ⊢ (𝜑 → 𝐽 ∈ 𝑁) |
mat1ov.u | ⊢ 𝑈 = (1r‘𝐴) |
Ref | Expression |
---|---|
mat1ov | ⊢ (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, 1 , 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mat1ov.u | . . 3 ⊢ 𝑈 = (1r‘𝐴) | |
2 | mat1ov.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
3 | mat1ov.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
4 | mat1.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
5 | mat1.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
6 | mat1.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
7 | 4, 5, 6 | mat1 21645 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) |
8 | 2, 3, 7 | syl2anc 585 | . . 3 ⊢ (𝜑 → (1r‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) |
9 | 1, 8 | eqtrid 2788 | . 2 ⊢ (𝜑 → 𝑈 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝑗, 1 , 0 ))) |
10 | eqeq12 2753 | . . . 4 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → (𝑖 = 𝑗 ↔ 𝐼 = 𝐽)) | |
11 | 10 | ifbid 4488 | . . 3 ⊢ ((𝑖 = 𝐼 ∧ 𝑗 = 𝐽) → if(𝑖 = 𝑗, 1 , 0 ) = if(𝐼 = 𝐽, 1 , 0 )) |
12 | 11 | adantl 483 | . 2 ⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑗 = 𝐽)) → if(𝑖 = 𝑗, 1 , 0 ) = if(𝐼 = 𝐽, 1 , 0 )) |
13 | mat1ov.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
14 | mat1ov.j | . 2 ⊢ (𝜑 → 𝐽 ∈ 𝑁) | |
15 | 5 | fvexi 6818 | . . . 4 ⊢ 1 ∈ V |
16 | 6 | fvexi 6818 | . . . 4 ⊢ 0 ∈ V |
17 | 15, 16 | ifex 4515 | . . 3 ⊢ if(𝐼 = 𝐽, 1 , 0 ) ∈ V |
18 | 17 | a1i 11 | . 2 ⊢ (𝜑 → if(𝐼 = 𝐽, 1 , 0 ) ∈ V) |
19 | 9, 12, 13, 14, 18 | ovmpod 7457 | 1 ⊢ (𝜑 → (𝐼𝑈𝐽) = if(𝐼 = 𝐽, 1 , 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ifcif 4465 ‘cfv 6458 (class class class)co 7307 ∈ cmpo 7309 Fincfn 8764 0gc0g 17199 1rcur 19786 Ringcrg 19832 Mat cmat 21603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-ot 4574 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-ixp 8717 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9177 df-sup 9249 df-oi 9317 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-fz 13290 df-fzo 13433 df-seq 13772 df-hash 14095 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-mulr 17025 df-sca 17027 df-vsca 17028 df-ip 17029 df-tset 17030 df-ple 17031 df-ds 17033 df-hom 17035 df-cco 17036 df-0g 17201 df-gsum 17202 df-prds 17207 df-pws 17209 df-mre 17344 df-mrc 17345 df-acs 17347 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-mhm 18479 df-submnd 18480 df-grp 18629 df-minusg 18630 df-sbg 18631 df-mulg 18750 df-subg 18801 df-ghm 18881 df-cntz 18972 df-cmn 19437 df-abl 19438 df-mgp 19770 df-ur 19787 df-ring 19834 df-subrg 20071 df-lmod 20174 df-lss 20243 df-sra 20483 df-rgmod 20484 df-dsmm 20988 df-frlm 21003 df-mamu 21582 df-mat 21604 |
This theorem is referenced by: dmatid 21693 scmatscmide 21705 ma1repveval 21769 1marepvmarrepid 21773 1marepvsma1 21781 mdet1 21799 mdetunilem8 21817 pmat1ovd 21895 mat2pmat1 21930 chpmat1dlem 22033 chpdmatlem2 22037 chpdmatlem3 22038 chpidmat 22045 1smat1 31803 matunitlindflem2 35822 |
Copyright terms: Public domain | W3C validator |