MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqlei Structured version   Visualization version   GIF version

Theorem eqlei 10486
Description: Equality implies 'less than or equal to'. (Contributed by NM, 23-May-1999.) (Revised by Alexander van der Vekens, 20-Mar-2018.)
Hypothesis
Ref Expression
lt.1 𝐴 ∈ ℝ
Assertion
Ref Expression
eqlei (𝐴 = 𝐵𝐴𝐵)

Proof of Theorem eqlei
StepHypRef Expression
1 lt.1 . . . 4 𝐴 ∈ ℝ
2 eleq1a 2853 . . . 4 (𝐴 ∈ ℝ → (𝐵 = 𝐴𝐵 ∈ ℝ))
31, 2ax-mp 5 . . 3 (𝐵 = 𝐴𝐵 ∈ ℝ)
43eqcoms 2785 . 2 (𝐴 = 𝐵𝐵 ∈ ℝ)
5 letri3 10462 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
61, 5mpan 680 . . 3 (𝐵 ∈ ℝ → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
7 simpl 476 . . 3 ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)
86, 7syl6bi 245 . 2 (𝐵 ∈ ℝ → (𝐴 = 𝐵𝐴𝐵))
94, 8mpcom 38 1 (𝐴 = 𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2106   class class class wbr 4886  cr 10271  cle 10412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-resscn 10329  ax-pre-lttri 10346  ax-pre-lttrn 10347
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-po 5274  df-so 5275  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417
This theorem is referenced by:  le2tri3i  10506  fldiv4lem1div2  12957  vdegp1bi  26885
  Copyright terms: Public domain W3C validator