Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqlei2 | Structured version Visualization version GIF version |
Description: Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
eqlei2 | ⊢ (𝐵 = 𝐴 → 𝐵 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
2 | eleq1a 2832 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 = 𝐴 → 𝐵 ∈ ℝ)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 = 𝐴 → 𝐵 ∈ ℝ) |
4 | eqcom 2743 | . . . 4 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
5 | letri3 11106 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
6 | 1, 5 | mpan 688 | . . . 4 ⊢ (𝐵 ∈ ℝ → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
7 | 4, 6 | bitrid 283 | . . 3 ⊢ (𝐵 ∈ ℝ → (𝐵 = 𝐴 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
8 | simpr 486 | . . 3 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
9 | 7, 8 | syl6bi 253 | . 2 ⊢ (𝐵 ∈ ℝ → (𝐵 = 𝐴 → 𝐵 ≤ 𝐴)) |
10 | 3, 9 | mpcom 38 | 1 ⊢ (𝐵 = 𝐴 → 𝐵 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 ℝcr 10916 ≤ cle 11056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10974 ax-pre-lttri 10991 ax-pre-lttrn 10992 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 |
This theorem is referenced by: usgruspgr 27593 konigsbergssiedgw 28659 fourierswlem 43820 |
Copyright terms: Public domain | W3C validator |