![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqlei2 | Structured version Visualization version GIF version |
Description: Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
eqlei2 | ⊢ (𝐵 = 𝐴 → 𝐵 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
2 | eleq1a 2824 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 = 𝐴 → 𝐵 ∈ ℝ)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 = 𝐴 → 𝐵 ∈ ℝ) |
4 | eqcom 2735 | . . . 4 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
5 | letri3 11330 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
6 | 1, 5 | mpan 689 | . . . 4 ⊢ (𝐵 ∈ ℝ → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
7 | 4, 6 | bitrid 283 | . . 3 ⊢ (𝐵 ∈ ℝ → (𝐵 = 𝐴 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
8 | simpr 484 | . . 3 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
9 | 7, 8 | biimtrdi 252 | . 2 ⊢ (𝐵 ∈ ℝ → (𝐵 = 𝐴 → 𝐵 ≤ 𝐴)) |
10 | 3, 9 | mpcom 38 | 1 ⊢ (𝐵 = 𝐴 → 𝐵 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 ℝcr 11138 ≤ cle 11280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-pre-lttri 11213 ax-pre-lttrn 11214 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 |
This theorem is referenced by: usgruspgr 29006 konigsbergssiedgw 30073 fourierswlem 45618 |
Copyright terms: Public domain | W3C validator |