Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqlei2 | Structured version Visualization version GIF version |
Description: Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
eqlei2 | ⊢ (𝐵 = 𝐴 → 𝐵 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
2 | eleq1a 2835 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 = 𝐴 → 𝐵 ∈ ℝ)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 = 𝐴 → 𝐵 ∈ ℝ) |
4 | eqcom 2746 | . . . 4 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
5 | letri3 11044 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
6 | 1, 5 | mpan 686 | . . . 4 ⊢ (𝐵 ∈ ℝ → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
7 | 4, 6 | syl5bb 282 | . . 3 ⊢ (𝐵 ∈ ℝ → (𝐵 = 𝐴 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
8 | simpr 484 | . . 3 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
9 | 7, 8 | syl6bi 252 | . 2 ⊢ (𝐵 ∈ ℝ → (𝐵 = 𝐴 → 𝐵 ≤ 𝐴)) |
10 | 3, 9 | mpcom 38 | 1 ⊢ (𝐵 = 𝐴 → 𝐵 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 class class class wbr 5078 ℝcr 10854 ≤ cle 10994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 |
This theorem is referenced by: usgruspgr 27529 konigsbergssiedgw 28593 fourierswlem 43725 |
Copyright terms: Public domain | W3C validator |