MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1val Structured version   Visualization version   GIF version

Theorem evl1val 22245
Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1fval.o 𝑂 = (eval1𝑅)
evl1fval.q 𝑄 = (1o eval 𝑅)
evl1fval.b 𝐵 = (Base‘𝑅)
evl1val.m 𝑀 = (1o mPoly 𝑅)
evl1val.k 𝐾 = (Base‘𝑀)
Assertion
Ref Expression
evl1val ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑂𝐴) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Distinct variable group:   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝑄(𝑦)   𝑅(𝑦)   𝐾(𝑦)   𝑀(𝑦)   𝑂(𝑦)

Proof of Theorem evl1val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evl1fval.o . . . . 5 𝑂 = (eval1𝑅)
2 evl1fval.q . . . . 5 𝑄 = (1o eval 𝑅)
3 evl1fval.b . . . . 5 𝐵 = (Base‘𝑅)
41, 2, 3evl1fval 22244 . . . 4 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)
54fveq1i 6829 . . 3 (𝑂𝐴) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴)
6 1on 8403 . . . . . 6 1o ∈ On
7 simpl 482 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑅 ∈ CRing)
8 evl1val.m . . . . . . 7 𝑀 = (1o mPoly 𝑅)
9 eqid 2733 . . . . . . 7 (𝑅s (𝐵m 1o)) = (𝑅s (𝐵m 1o))
102, 3, 8, 9evlrhm 22032 . . . . . 6 ((1o ∈ On ∧ 𝑅 ∈ CRing) → 𝑄 ∈ (𝑀 RingHom (𝑅s (𝐵m 1o))))
116, 7, 10sylancr 587 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑄 ∈ (𝑀 RingHom (𝑅s (𝐵m 1o))))
12 evl1val.k . . . . . 6 𝐾 = (Base‘𝑀)
13 eqid 2733 . . . . . 6 (Base‘(𝑅s (𝐵m 1o))) = (Base‘(𝑅s (𝐵m 1o)))
1412, 13rhmf 20404 . . . . 5 (𝑄 ∈ (𝑀 RingHom (𝑅s (𝐵m 1o))) → 𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))))
1511, 14syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))))
16 fvco3 6927 . . . 4 ((𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))) ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)))
1715, 16sylancom 588 . . 3 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)))
185, 17eqtrid 2780 . 2 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑂𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)))
19 ffvelcdm 7020 . . . . 5 ((𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))) ∧ 𝐴𝐾) → (𝑄𝐴) ∈ (Base‘(𝑅s (𝐵m 1o))))
2015, 19sylancom 588 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑄𝐴) ∈ (Base‘(𝑅s (𝐵m 1o))))
21 crngring 20165 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2221adantr 480 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑅 ∈ Ring)
23 ovex 7385 . . . . 5 (𝐵m 1o) ∈ V
249, 3pwsbas 17393 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐵m 1o) ∈ V) → (𝐵m (𝐵m 1o)) = (Base‘(𝑅s (𝐵m 1o))))
2522, 23, 24sylancl 586 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝐵m (𝐵m 1o)) = (Base‘(𝑅s (𝐵m 1o))))
2620, 25eleqtrrd 2836 . . 3 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑄𝐴) ∈ (𝐵m (𝐵m 1o)))
27 coeq1 5801 . . . 4 (𝑥 = (𝑄𝐴) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
28 eqid 2733 . . . 4 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
29 fvex 6841 . . . . 5 (𝑄𝐴) ∈ V
303fvexi 6842 . . . . . 6 𝐵 ∈ V
3130mptex 7163 . . . . 5 (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V
3229, 31coex 7866 . . . 4 ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V
3327, 28, 32fvmpt 6935 . . 3 ((𝑄𝐴) ∈ (𝐵m (𝐵m 1o)) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
3426, 33syl 17 . 2 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
3518, 34eqtrd 2768 1 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑂𝐴) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4575  cmpt 5174   × cxp 5617  ccom 5623  Oncon0 6311  wf 6482  cfv 6486  (class class class)co 7352  1oc1o 8384  m cmap 8756  Basecbs 17122  s cpws 17352  Ringcrg 20153  CRingccrg 20154   RingHom crh 20389   mPoly cmpl 21845   eval cevl 22009  eval1ce1 22230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-rhm 20392  df-subrng 20463  df-subrg 20487  df-lmod 20797  df-lss 20867  df-lsp 20907  df-assa 21792  df-asp 21793  df-ascl 21794  df-psr 21848  df-mvr 21849  df-mpl 21850  df-evls 22010  df-evl 22011  df-evl1 22232
This theorem is referenced by:  evl1sca  22250  evl1var  22252  evls1var  22254  mpfpf1  22267  pf1mpf  22268  pf1ind  22271
  Copyright terms: Public domain W3C validator