MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1val Structured version   Visualization version   GIF version

Theorem evl1val 21839
Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1fval.o 𝑂 = (eval1𝑅)
evl1fval.q 𝑄 = (1o eval 𝑅)
evl1fval.b 𝐵 = (Base‘𝑅)
evl1val.m 𝑀 = (1o mPoly 𝑅)
evl1val.k 𝐾 = (Base‘𝑀)
Assertion
Ref Expression
evl1val ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑂𝐴) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Distinct variable group:   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝑄(𝑦)   𝑅(𝑦)   𝐾(𝑦)   𝑀(𝑦)   𝑂(𝑦)

Proof of Theorem evl1val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evl1fval.o . . . . 5 𝑂 = (eval1𝑅)
2 evl1fval.q . . . . 5 𝑄 = (1o eval 𝑅)
3 evl1fval.b . . . . 5 𝐵 = (Base‘𝑅)
41, 2, 3evl1fval 21838 . . . 4 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)
54fveq1i 6889 . . 3 (𝑂𝐴) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴)
6 1on 8474 . . . . . 6 1o ∈ On
7 simpl 483 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑅 ∈ CRing)
8 evl1val.m . . . . . . 7 𝑀 = (1o mPoly 𝑅)
9 eqid 2732 . . . . . . 7 (𝑅s (𝐵m 1o)) = (𝑅s (𝐵m 1o))
102, 3, 8, 9evlrhm 21650 . . . . . 6 ((1o ∈ On ∧ 𝑅 ∈ CRing) → 𝑄 ∈ (𝑀 RingHom (𝑅s (𝐵m 1o))))
116, 7, 10sylancr 587 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑄 ∈ (𝑀 RingHom (𝑅s (𝐵m 1o))))
12 evl1val.k . . . . . 6 𝐾 = (Base‘𝑀)
13 eqid 2732 . . . . . 6 (Base‘(𝑅s (𝐵m 1o))) = (Base‘(𝑅s (𝐵m 1o)))
1412, 13rhmf 20255 . . . . 5 (𝑄 ∈ (𝑀 RingHom (𝑅s (𝐵m 1o))) → 𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))))
1511, 14syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))))
16 fvco3 6987 . . . 4 ((𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))) ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)))
1715, 16sylancom 588 . . 3 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)))
185, 17eqtrid 2784 . 2 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑂𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)))
19 ffvelcdm 7080 . . . . 5 ((𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))) ∧ 𝐴𝐾) → (𝑄𝐴) ∈ (Base‘(𝑅s (𝐵m 1o))))
2015, 19sylancom 588 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑄𝐴) ∈ (Base‘(𝑅s (𝐵m 1o))))
21 crngring 20061 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2221adantr 481 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑅 ∈ Ring)
23 ovex 7438 . . . . 5 (𝐵m 1o) ∈ V
249, 3pwsbas 17429 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐵m 1o) ∈ V) → (𝐵m (𝐵m 1o)) = (Base‘(𝑅s (𝐵m 1o))))
2522, 23, 24sylancl 586 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝐵m (𝐵m 1o)) = (Base‘(𝑅s (𝐵m 1o))))
2620, 25eleqtrrd 2836 . . 3 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑄𝐴) ∈ (𝐵m (𝐵m 1o)))
27 coeq1 5855 . . . 4 (𝑥 = (𝑄𝐴) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
28 eqid 2732 . . . 4 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
29 fvex 6901 . . . . 5 (𝑄𝐴) ∈ V
303fvexi 6902 . . . . . 6 𝐵 ∈ V
3130mptex 7221 . . . . 5 (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V
3229, 31coex 7917 . . . 4 ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V
3327, 28, 32fvmpt 6995 . . 3 ((𝑄𝐴) ∈ (𝐵m (𝐵m 1o)) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
3426, 33syl 17 . 2 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
3518, 34eqtrd 2772 1 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑂𝐴) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  {csn 4627  cmpt 5230   × cxp 5673  ccom 5679  Oncon0 6361  wf 6536  cfv 6540  (class class class)co 7405  1oc1o 8455  m cmap 8816  Basecbs 17140  s cpws 17388  Ringcrg 20049  CRingccrg 20050   RingHom crh 20240   mPoly cmpl 21450   eval cevl 21625  eval1ce1 21824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-ofr 7667  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-ghm 19084  df-cntz 19175  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-srg 20003  df-ring 20051  df-cring 20052  df-rnghom 20243  df-subrg 20353  df-lmod 20465  df-lss 20535  df-lsp 20575  df-assa 21399  df-asp 21400  df-ascl 21401  df-psr 21453  df-mvr 21454  df-mpl 21455  df-evls 21626  df-evl 21627  df-evl1 21826
This theorem is referenced by:  evl1sca  21844  evl1var  21846  evls1var  21848  mpfpf1  21861  pf1mpf  21862  pf1ind  21865
  Copyright terms: Public domain W3C validator