![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1val | Structured version Visualization version GIF version |
Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.) |
Ref | Expression |
---|---|
evl1fval.o | ⊢ 𝑂 = (eval1‘𝑅) |
evl1fval.q | ⊢ 𝑄 = (1o eval 𝑅) |
evl1fval.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1val.m | ⊢ 𝑀 = (1o mPoly 𝑅) |
evl1val.k | ⊢ 𝐾 = (Base‘𝑀) |
Ref | Expression |
---|---|
evl1val | ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → (𝑂‘𝐴) = ((𝑄‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1fval.o | . . . . 5 ⊢ 𝑂 = (eval1‘𝑅) | |
2 | evl1fval.q | . . . . 5 ⊢ 𝑄 = (1o eval 𝑅) | |
3 | evl1fval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 1, 2, 3 | evl1fval 21694 | . . . 4 ⊢ 𝑂 = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄) |
5 | 4 | fveq1i 6843 | . . 3 ⊢ (𝑂‘𝐴) = (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴) |
6 | 1on 8424 | . . . . . 6 ⊢ 1o ∈ On | |
7 | simpl 483 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → 𝑅 ∈ CRing) | |
8 | evl1val.m | . . . . . . 7 ⊢ 𝑀 = (1o mPoly 𝑅) | |
9 | eqid 2736 | . . . . . . 7 ⊢ (𝑅 ↑s (𝐵 ↑m 1o)) = (𝑅 ↑s (𝐵 ↑m 1o)) | |
10 | 2, 3, 8, 9 | evlrhm 21506 | . . . . . 6 ⊢ ((1o ∈ On ∧ 𝑅 ∈ CRing) → 𝑄 ∈ (𝑀 RingHom (𝑅 ↑s (𝐵 ↑m 1o)))) |
11 | 6, 7, 10 | sylancr 587 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → 𝑄 ∈ (𝑀 RingHom (𝑅 ↑s (𝐵 ↑m 1o)))) |
12 | evl1val.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑀) | |
13 | eqid 2736 | . . . . . 6 ⊢ (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) = (Base‘(𝑅 ↑s (𝐵 ↑m 1o))) | |
14 | 12, 13 | rhmf 20158 | . . . . 5 ⊢ (𝑄 ∈ (𝑀 RingHom (𝑅 ↑s (𝐵 ↑m 1o))) → 𝑄:𝐾⟶(Base‘(𝑅 ↑s (𝐵 ↑m 1o)))) |
15 | 11, 14 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → 𝑄:𝐾⟶(Base‘(𝑅 ↑s (𝐵 ↑m 1o)))) |
16 | fvco3 6940 | . . . 4 ⊢ ((𝑄:𝐾⟶(Base‘(𝑅 ↑s (𝐵 ↑m 1o))) ∧ 𝐴 ∈ 𝐾) → (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘(𝑄‘𝐴))) | |
17 | 15, 16 | sylancom 588 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → (((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘(𝑄‘𝐴))) |
18 | 5, 17 | eqtrid 2788 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → (𝑂‘𝐴) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘(𝑄‘𝐴))) |
19 | ffvelcdm 7032 | . . . . 5 ⊢ ((𝑄:𝐾⟶(Base‘(𝑅 ↑s (𝐵 ↑m 1o))) ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) ∈ (Base‘(𝑅 ↑s (𝐵 ↑m 1o)))) | |
20 | 15, 19 | sylancom 588 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) ∈ (Base‘(𝑅 ↑s (𝐵 ↑m 1o)))) |
21 | crngring 19976 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
22 | 21 | adantr 481 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → 𝑅 ∈ Ring) |
23 | ovex 7390 | . . . . 5 ⊢ (𝐵 ↑m 1o) ∈ V | |
24 | 9, 3 | pwsbas 17369 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝐵 ↑m 1o) ∈ V) → (𝐵 ↑m (𝐵 ↑m 1o)) = (Base‘(𝑅 ↑s (𝐵 ↑m 1o)))) |
25 | 22, 23, 24 | sylancl 586 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → (𝐵 ↑m (𝐵 ↑m 1o)) = (Base‘(𝑅 ↑s (𝐵 ↑m 1o)))) |
26 | 20, 25 | eleqtrrd 2841 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → (𝑄‘𝐴) ∈ (𝐵 ↑m (𝐵 ↑m 1o))) |
27 | coeq1 5813 | . . . 4 ⊢ (𝑥 = (𝑄‘𝐴) → (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) = ((𝑄‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
28 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) | |
29 | fvex 6855 | . . . . 5 ⊢ (𝑄‘𝐴) ∈ V | |
30 | 3 | fvexi 6856 | . . . . . 6 ⊢ 𝐵 ∈ V |
31 | 30 | mptex 7173 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})) ∈ V |
32 | 29, 31 | coex 7867 | . . . 4 ⊢ ((𝑄‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))) ∈ V |
33 | 27, 28, 32 | fvmpt 6948 | . . 3 ⊢ ((𝑄‘𝐴) ∈ (𝐵 ↑m (𝐵 ↑m 1o)) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘(𝑄‘𝐴)) = ((𝑄‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
34 | 26, 33 | syl 17 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦}))))‘(𝑄‘𝐴)) = ((𝑄‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
35 | 18, 34 | eqtrd 2776 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ 𝐾) → (𝑂‘𝐴) = ((𝑄‘𝐴) ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3445 {csn 4586 ↦ cmpt 5188 × cxp 5631 ∘ ccom 5637 Oncon0 6317 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 1oc1o 8405 ↑m cmap 8765 Basecbs 17083 ↑s cpws 17328 Ringcrg 19964 CRingccrg 19965 RingHom crh 20143 mPoly cmpl 21308 eval cevl 21481 eval1ce1 21680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-ofr 7618 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-0g 17323 df-gsum 17324 df-prds 17329 df-pws 17331 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-ghm 19006 df-cntz 19097 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-srg 19918 df-ring 19966 df-cring 19967 df-rnghom 20146 df-subrg 20220 df-lmod 20324 df-lss 20393 df-lsp 20433 df-assa 21259 df-asp 21260 df-ascl 21261 df-psr 21311 df-mvr 21312 df-mpl 21313 df-evls 21482 df-evl 21483 df-evl1 21682 |
This theorem is referenced by: evl1sca 21700 evl1var 21702 evls1var 21704 mpfpf1 21717 pf1mpf 21718 pf1ind 21721 |
Copyright terms: Public domain | W3C validator |