MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1val Structured version   Visualization version   GIF version

Theorem evl1val 21578
Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1fval.o 𝑂 = (eval1𝑅)
evl1fval.q 𝑄 = (1o eval 𝑅)
evl1fval.b 𝐵 = (Base‘𝑅)
evl1val.m 𝑀 = (1o mPoly 𝑅)
evl1val.k 𝐾 = (Base‘𝑀)
Assertion
Ref Expression
evl1val ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑂𝐴) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Distinct variable group:   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝑄(𝑦)   𝑅(𝑦)   𝐾(𝑦)   𝑀(𝑦)   𝑂(𝑦)

Proof of Theorem evl1val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evl1fval.o . . . . 5 𝑂 = (eval1𝑅)
2 evl1fval.q . . . . 5 𝑄 = (1o eval 𝑅)
3 evl1fval.b . . . . 5 𝐵 = (Base‘𝑅)
41, 2, 3evl1fval 21577 . . . 4 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)
54fveq1i 6813 . . 3 (𝑂𝐴) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴)
6 1on 8358 . . . . . 6 1o ∈ On
7 simpl 483 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑅 ∈ CRing)
8 evl1val.m . . . . . . 7 𝑀 = (1o mPoly 𝑅)
9 eqid 2737 . . . . . . 7 (𝑅s (𝐵m 1o)) = (𝑅s (𝐵m 1o))
102, 3, 8, 9evlrhm 21389 . . . . . 6 ((1o ∈ On ∧ 𝑅 ∈ CRing) → 𝑄 ∈ (𝑀 RingHom (𝑅s (𝐵m 1o))))
116, 7, 10sylancr 587 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑄 ∈ (𝑀 RingHom (𝑅s (𝐵m 1o))))
12 evl1val.k . . . . . 6 𝐾 = (Base‘𝑀)
13 eqid 2737 . . . . . 6 (Base‘(𝑅s (𝐵m 1o))) = (Base‘(𝑅s (𝐵m 1o)))
1412, 13rhmf 20045 . . . . 5 (𝑄 ∈ (𝑀 RingHom (𝑅s (𝐵m 1o))) → 𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))))
1511, 14syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))))
16 fvco3 6907 . . . 4 ((𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))) ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)))
1715, 16sylancom 588 . . 3 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)))
185, 17eqtrid 2789 . 2 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑂𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)))
19 ffvelcdm 6999 . . . . 5 ((𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))) ∧ 𝐴𝐾) → (𝑄𝐴) ∈ (Base‘(𝑅s (𝐵m 1o))))
2015, 19sylancom 588 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑄𝐴) ∈ (Base‘(𝑅s (𝐵m 1o))))
21 crngring 19870 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2221adantr 481 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑅 ∈ Ring)
23 ovex 7350 . . . . 5 (𝐵m 1o) ∈ V
249, 3pwsbas 17275 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐵m 1o) ∈ V) → (𝐵m (𝐵m 1o)) = (Base‘(𝑅s (𝐵m 1o))))
2522, 23, 24sylancl 586 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝐵m (𝐵m 1o)) = (Base‘(𝑅s (𝐵m 1o))))
2620, 25eleqtrrd 2841 . . 3 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑄𝐴) ∈ (𝐵m (𝐵m 1o)))
27 coeq1 5787 . . . 4 (𝑥 = (𝑄𝐴) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
28 eqid 2737 . . . 4 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
29 fvex 6825 . . . . 5 (𝑄𝐴) ∈ V
303fvexi 6826 . . . . . 6 𝐵 ∈ V
3130mptex 7139 . . . . 5 (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V
3229, 31coex 7824 . . . 4 ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V
3327, 28, 32fvmpt 6915 . . 3 ((𝑄𝐴) ∈ (𝐵m (𝐵m 1o)) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
3426, 33syl 17 . 2 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
3518, 34eqtrd 2777 1 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑂𝐴) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  Vcvv 3441  {csn 4571  cmpt 5170   × cxp 5606  ccom 5612  Oncon0 6289  wf 6462  cfv 6466  (class class class)co 7317  1oc1o 8339  m cmap 8665  Basecbs 16989  s cpws 17234  Ringcrg 19858  CRingccrg 19859   RingHom crh 20031   mPoly cmpl 21192   eval cevl 21364  eval1ce1 21563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-se 5564  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-isom 6475  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-of 7575  df-ofr 7576  df-om 7760  df-1st 7878  df-2nd 7879  df-supp 8027  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-er 8548  df-map 8667  df-pm 8668  df-ixp 8736  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-fsupp 9206  df-sup 9278  df-oi 9346  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-2 12116  df-3 12117  df-4 12118  df-5 12119  df-6 12120  df-7 12121  df-8 12122  df-9 12123  df-n0 12314  df-z 12400  df-dec 12518  df-uz 12663  df-fz 13320  df-fzo 13463  df-seq 13802  df-hash 14125  df-struct 16925  df-sets 16942  df-slot 16960  df-ndx 16972  df-base 16990  df-ress 17019  df-plusg 17052  df-mulr 17053  df-sca 17055  df-vsca 17056  df-ip 17057  df-tset 17058  df-ple 17059  df-ds 17061  df-hom 17063  df-cco 17064  df-0g 17229  df-gsum 17230  df-prds 17235  df-pws 17237  df-mre 17372  df-mrc 17373  df-acs 17375  df-mgm 18403  df-sgrp 18452  df-mnd 18463  df-mhm 18507  df-submnd 18508  df-grp 18656  df-minusg 18657  df-sbg 18658  df-mulg 18777  df-subg 18828  df-ghm 18908  df-cntz 18999  df-cmn 19463  df-abl 19464  df-mgp 19796  df-ur 19813  df-srg 19817  df-ring 19860  df-cring 19861  df-rnghom 20034  df-subrg 20104  df-lmod 20208  df-lss 20277  df-lsp 20317  df-assa 21143  df-asp 21144  df-ascl 21145  df-psr 21195  df-mvr 21196  df-mpl 21197  df-evls 21365  df-evl 21366  df-evl1 21565
This theorem is referenced by:  evl1sca  21583  evl1var  21585  evls1var  21587  mpfpf1  21600  pf1mpf  21601  pf1ind  21604
  Copyright terms: Public domain W3C validator