MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1val Structured version   Visualization version   GIF version

Theorem evl1val 22242
Description: Value of the simple/same ring evaluation map. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
evl1fval.o 𝑂 = (eval1𝑅)
evl1fval.q 𝑄 = (1o eval 𝑅)
evl1fval.b 𝐵 = (Base‘𝑅)
evl1val.m 𝑀 = (1o mPoly 𝑅)
evl1val.k 𝐾 = (Base‘𝑀)
Assertion
Ref Expression
evl1val ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑂𝐴) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Distinct variable group:   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑦)   𝑄(𝑦)   𝑅(𝑦)   𝐾(𝑦)   𝑀(𝑦)   𝑂(𝑦)

Proof of Theorem evl1val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evl1fval.o . . . . 5 𝑂 = (eval1𝑅)
2 evl1fval.q . . . . 5 𝑄 = (1o eval 𝑅)
3 evl1fval.b . . . . 5 𝐵 = (Base‘𝑅)
41, 2, 3evl1fval 22241 . . . 4 𝑂 = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)
54fveq1i 6823 . . 3 (𝑂𝐴) = (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴)
6 1on 8397 . . . . . 6 1o ∈ On
7 simpl 482 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑅 ∈ CRing)
8 evl1val.m . . . . . . 7 𝑀 = (1o mPoly 𝑅)
9 eqid 2731 . . . . . . 7 (𝑅s (𝐵m 1o)) = (𝑅s (𝐵m 1o))
102, 3, 8, 9evlrhm 22029 . . . . . 6 ((1o ∈ On ∧ 𝑅 ∈ CRing) → 𝑄 ∈ (𝑀 RingHom (𝑅s (𝐵m 1o))))
116, 7, 10sylancr 587 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑄 ∈ (𝑀 RingHom (𝑅s (𝐵m 1o))))
12 evl1val.k . . . . . 6 𝐾 = (Base‘𝑀)
13 eqid 2731 . . . . . 6 (Base‘(𝑅s (𝐵m 1o))) = (Base‘(𝑅s (𝐵m 1o)))
1412, 13rhmf 20400 . . . . 5 (𝑄 ∈ (𝑀 RingHom (𝑅s (𝐵m 1o))) → 𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))))
1511, 14syl 17 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))))
16 fvco3 6921 . . . 4 ((𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))) ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)))
1715, 16sylancom 588 . . 3 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ 𝑄)‘𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)))
185, 17eqtrid 2778 . 2 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑂𝐴) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)))
19 ffvelcdm 7014 . . . . 5 ((𝑄:𝐾⟶(Base‘(𝑅s (𝐵m 1o))) ∧ 𝐴𝐾) → (𝑄𝐴) ∈ (Base‘(𝑅s (𝐵m 1o))))
2015, 19sylancom 588 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑄𝐴) ∈ (Base‘(𝑅s (𝐵m 1o))))
21 crngring 20161 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2221adantr 480 . . . . 5 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → 𝑅 ∈ Ring)
23 ovex 7379 . . . . 5 (𝐵m 1o) ∈ V
249, 3pwsbas 17388 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐵m 1o) ∈ V) → (𝐵m (𝐵m 1o)) = (Base‘(𝑅s (𝐵m 1o))))
2522, 23, 24sylancl 586 . . . 4 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝐵m (𝐵m 1o)) = (Base‘(𝑅s (𝐵m 1o))))
2620, 25eleqtrrd 2834 . . 3 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑄𝐴) ∈ (𝐵m (𝐵m 1o)))
27 coeq1 5797 . . . 4 (𝑥 = (𝑄𝐴) → (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
28 eqid 2731 . . . 4 (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) = (𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
29 fvex 6835 . . . . 5 (𝑄𝐴) ∈ V
303fvexi 6836 . . . . . 6 𝐵 ∈ V
3130mptex 7157 . . . . 5 (𝑦𝐵 ↦ (1o × {𝑦})) ∈ V
3229, 31coex 7860 . . . 4 ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))) ∈ V
3327, 28, 32fvmpt 6929 . . 3 ((𝑄𝐴) ∈ (𝐵m (𝐵m 1o)) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
3426, 33syl 17 . 2 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))‘(𝑄𝐴)) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
3518, 34eqtrd 2766 1 ((𝑅 ∈ CRing ∧ 𝐴𝐾) → (𝑂𝐴) = ((𝑄𝐴) ∘ (𝑦𝐵 ↦ (1o × {𝑦}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4576  cmpt 5172   × cxp 5614  ccom 5620  Oncon0 6306  wf 6477  cfv 6481  (class class class)co 7346  1oc1o 8378  m cmap 8750  Basecbs 17117  s cpws 17347  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385   mPoly cmpl 21841   eval cevl 22006  eval1ce1 22227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-mhm 18688  df-submnd 18689  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mulg 18978  df-subg 19033  df-ghm 19123  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-rhm 20388  df-subrng 20459  df-subrg 20483  df-lmod 20793  df-lss 20863  df-lsp 20903  df-assa 21788  df-asp 21789  df-ascl 21790  df-psr 21844  df-mvr 21845  df-mpl 21846  df-evls 22007  df-evl 22008  df-evl1 22229
This theorem is referenced by:  evl1sca  22247  evl1var  22249  evls1var  22251  mpfpf1  22264  pf1mpf  22265  pf1ind  22268
  Copyright terms: Public domain W3C validator