MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfelbas Structured version   Visualization version   GIF version

Theorem flfelbas 23967
Description: A limit point of a function is in the topological space. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
flfelbas (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) → 𝐴𝑋)

Proof of Theorem flfelbas
Dummy variables 𝑜 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isflf 23966 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑜))))
21simprbda 498 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹)) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2107  wral 3050  wrex 3059  wss 3933  cima 5670  wf 6538  cfv 6542  (class class class)co 7414  TopOnctopon 22883  Filcfil 23818   fLimf cflf 23908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-map 8851  df-fbas 21328  df-fg 21329  df-top 22867  df-topon 22884  df-ntr 22993  df-nei 23071  df-fil 23819  df-fm 23911  df-flim 23912  df-flf 23913
This theorem is referenced by:  cnextf  24039
  Copyright terms: Public domain W3C validator