MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flffbas Structured version   Visualization version   GIF version

Theorem flffbas 23908
Description: Limit points of a function can be defined using filter bases. (Contributed by Jeff Hankins, 9-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
flffbas.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
flffbas ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝐵,𝑜,𝑠   𝑜,𝐹,𝑠   𝑜,𝐽,𝑠   𝑜,𝐿,𝑠   𝑜,𝑋,𝑠   𝑜,𝑌,𝑠

Proof of Theorem flffbas
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 flffbas.l . . . 4 𝐿 = (𝑌filGen𝐵)
2 fgcl 23791 . . . 4 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
31, 2eqeltrid 2835 . . 3 (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
4 isflf 23906 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))))
53, 4syl3an2 1164 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))))
61eleq2i 2823 . . . . . . . 8 (𝑡𝐿𝑡 ∈ (𝑌filGen𝐵))
7 elfg 23784 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → (𝑡 ∈ (𝑌filGen𝐵) ↔ (𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡)))
873ad2ant2 1134 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ (𝑌filGen𝐵) ↔ (𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡)))
9 sstr2 3941 . . . . . . . . . . . . . . . 16 ((𝐹𝑠) ⊆ (𝐹𝑡) → ((𝐹𝑡) ⊆ 𝑜 → (𝐹𝑠) ⊆ 𝑜))
10 imass2 6051 . . . . . . . . . . . . . . . 16 (𝑠𝑡 → (𝐹𝑠) ⊆ (𝐹𝑡))
119, 10syl11 33 . . . . . . . . . . . . . . 15 ((𝐹𝑡) ⊆ 𝑜 → (𝑠𝑡 → (𝐹𝑠) ⊆ 𝑜))
1211adantl 481 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐹𝑡) ⊆ 𝑜) → (𝑠𝑡 → (𝐹𝑠) ⊆ 𝑜))
1312reximdv 3147 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐹𝑡) ⊆ 𝑜) → (∃𝑠𝐵 𝑠𝑡 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
1413ex 412 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐹𝑡) ⊆ 𝑜 → (∃𝑠𝐵 𝑠𝑡 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1514com23 86 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠𝐵 𝑠𝑡 → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1615adantld 490 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
178, 16sylbid 240 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ (𝑌filGen𝐵) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1817adantr 480 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (𝑡 ∈ (𝑌filGen𝐵) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
196, 18biimtrid 242 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (𝑡𝐿 → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
2019rexlimdv 3131 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
21 ssfg 23785 . . . . . . . . . . . 12 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
2221, 1sseqtrrdi 3976 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → 𝐵𝐿)
2322sselda 3934 . . . . . . . . . 10 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝐿)
24233ad2antl2 1187 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠𝐵) → 𝑠𝐿)
2524ad2ant2r 747 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → 𝑠𝐿)
26 simprr 772 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → (𝐹𝑠) ⊆ 𝑜)
27 imaeq2 6005 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
2827sseq1d 3966 . . . . . . . . 9 (𝑡 = 𝑠 → ((𝐹𝑡) ⊆ 𝑜 ↔ (𝐹𝑠) ⊆ 𝑜))
2928rspcev 3577 . . . . . . . 8 ((𝑠𝐿 ∧ (𝐹𝑠) ⊆ 𝑜) → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)
3025, 26, 29syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)
3130rexlimdvaa 3134 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))
3220, 31impbid 212 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜 ↔ ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
3332imbi2d 340 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → ((𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜) ↔ (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
3433ralbidv 3155 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
3534pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
365, 35bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3902  cima 5619  wf 6477  cfv 6481  (class class class)co 7346  fBascfbas 21277  filGencfg 21278  TopOnctopon 22823  Filcfil 23758   fLimf cflf 23848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-fbas 21286  df-fg 21287  df-top 22807  df-topon 22824  df-ntr 22933  df-nei 23011  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853
This theorem is referenced by:  lmflf  23918  eltsms  24046
  Copyright terms: Public domain W3C validator