MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flffbas Structured version   Visualization version   GIF version

Theorem flffbas 23898
Description: Limit points of a function can be defined using filter bases. (Contributed by Jeff Hankins, 9-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
flffbas.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
flffbas ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝐵,𝑜,𝑠   𝑜,𝐹,𝑠   𝑜,𝐽,𝑠   𝑜,𝐿,𝑠   𝑜,𝑋,𝑠   𝑜,𝑌,𝑠

Proof of Theorem flffbas
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 flffbas.l . . . 4 𝐿 = (𝑌filGen𝐵)
2 fgcl 23781 . . . 4 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
31, 2eqeltrid 2832 . . 3 (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
4 isflf 23896 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))))
53, 4syl3an2 1164 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))))
61eleq2i 2820 . . . . . . . 8 (𝑡𝐿𝑡 ∈ (𝑌filGen𝐵))
7 elfg 23774 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → (𝑡 ∈ (𝑌filGen𝐵) ↔ (𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡)))
873ad2ant2 1134 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ (𝑌filGen𝐵) ↔ (𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡)))
9 sstr2 3944 . . . . . . . . . . . . . . . 16 ((𝐹𝑠) ⊆ (𝐹𝑡) → ((𝐹𝑡) ⊆ 𝑜 → (𝐹𝑠) ⊆ 𝑜))
10 imass2 6057 . . . . . . . . . . . . . . . 16 (𝑠𝑡 → (𝐹𝑠) ⊆ (𝐹𝑡))
119, 10syl11 33 . . . . . . . . . . . . . . 15 ((𝐹𝑡) ⊆ 𝑜 → (𝑠𝑡 → (𝐹𝑠) ⊆ 𝑜))
1211adantl 481 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐹𝑡) ⊆ 𝑜) → (𝑠𝑡 → (𝐹𝑠) ⊆ 𝑜))
1312reximdv 3144 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐹𝑡) ⊆ 𝑜) → (∃𝑠𝐵 𝑠𝑡 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
1413ex 412 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐹𝑡) ⊆ 𝑜 → (∃𝑠𝐵 𝑠𝑡 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1514com23 86 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠𝐵 𝑠𝑡 → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1615adantld 490 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
178, 16sylbid 240 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ (𝑌filGen𝐵) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1817adantr 480 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (𝑡 ∈ (𝑌filGen𝐵) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
196, 18biimtrid 242 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (𝑡𝐿 → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
2019rexlimdv 3128 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
21 ssfg 23775 . . . . . . . . . . . 12 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
2221, 1sseqtrrdi 3979 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → 𝐵𝐿)
2322sselda 3937 . . . . . . . . . 10 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝐿)
24233ad2antl2 1187 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠𝐵) → 𝑠𝐿)
2524ad2ant2r 747 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → 𝑠𝐿)
26 simprr 772 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → (𝐹𝑠) ⊆ 𝑜)
27 imaeq2 6011 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
2827sseq1d 3969 . . . . . . . . 9 (𝑡 = 𝑠 → ((𝐹𝑡) ⊆ 𝑜 ↔ (𝐹𝑠) ⊆ 𝑜))
2928rspcev 3579 . . . . . . . 8 ((𝑠𝐿 ∧ (𝐹𝑠) ⊆ 𝑜) → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)
3025, 26, 29syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)
3130rexlimdvaa 3131 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))
3220, 31impbid 212 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜 ↔ ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
3332imbi2d 340 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → ((𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜) ↔ (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
3433ralbidv 3152 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
3534pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
365, 35bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3905  cima 5626  wf 6482  cfv 6486  (class class class)co 7353  fBascfbas 21267  filGencfg 21268  TopOnctopon 22813  Filcfil 23748   fLimf cflf 23838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-fbas 21276  df-fg 21277  df-top 22797  df-topon 22814  df-ntr 22923  df-nei 23001  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843
This theorem is referenced by:  lmflf  23908  eltsms  24036
  Copyright terms: Public domain W3C validator