MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flffbas Structured version   Visualization version   GIF version

Theorem flffbas 23889
Description: Limit points of a function can be defined using filter bases. (Contributed by Jeff Hankins, 9-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
flffbas.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
flffbas ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝐵,𝑜,𝑠   𝑜,𝐹,𝑠   𝑜,𝐽,𝑠   𝑜,𝐿,𝑠   𝑜,𝑋,𝑠   𝑜,𝑌,𝑠

Proof of Theorem flffbas
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 flffbas.l . . . 4 𝐿 = (𝑌filGen𝐵)
2 fgcl 23772 . . . 4 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
31, 2eqeltrid 2833 . . 3 (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
4 isflf 23887 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))))
53, 4syl3an2 1164 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))))
61eleq2i 2821 . . . . . . . 8 (𝑡𝐿𝑡 ∈ (𝑌filGen𝐵))
7 elfg 23765 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → (𝑡 ∈ (𝑌filGen𝐵) ↔ (𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡)))
873ad2ant2 1134 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ (𝑌filGen𝐵) ↔ (𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡)))
9 sstr2 3956 . . . . . . . . . . . . . . . 16 ((𝐹𝑠) ⊆ (𝐹𝑡) → ((𝐹𝑡) ⊆ 𝑜 → (𝐹𝑠) ⊆ 𝑜))
10 imass2 6076 . . . . . . . . . . . . . . . 16 (𝑠𝑡 → (𝐹𝑠) ⊆ (𝐹𝑡))
119, 10syl11 33 . . . . . . . . . . . . . . 15 ((𝐹𝑡) ⊆ 𝑜 → (𝑠𝑡 → (𝐹𝑠) ⊆ 𝑜))
1211adantl 481 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐹𝑡) ⊆ 𝑜) → (𝑠𝑡 → (𝐹𝑠) ⊆ 𝑜))
1312reximdv 3149 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐹𝑡) ⊆ 𝑜) → (∃𝑠𝐵 𝑠𝑡 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
1413ex 412 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐹𝑡) ⊆ 𝑜 → (∃𝑠𝐵 𝑠𝑡 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1514com23 86 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠𝐵 𝑠𝑡 → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1615adantld 490 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
178, 16sylbid 240 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ (𝑌filGen𝐵) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1817adantr 480 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (𝑡 ∈ (𝑌filGen𝐵) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
196, 18biimtrid 242 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (𝑡𝐿 → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
2019rexlimdv 3133 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
21 ssfg 23766 . . . . . . . . . . . 12 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
2221, 1sseqtrrdi 3991 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → 𝐵𝐿)
2322sselda 3949 . . . . . . . . . 10 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝐿)
24233ad2antl2 1187 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠𝐵) → 𝑠𝐿)
2524ad2ant2r 747 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → 𝑠𝐿)
26 simprr 772 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → (𝐹𝑠) ⊆ 𝑜)
27 imaeq2 6030 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
2827sseq1d 3981 . . . . . . . . 9 (𝑡 = 𝑠 → ((𝐹𝑡) ⊆ 𝑜 ↔ (𝐹𝑠) ⊆ 𝑜))
2928rspcev 3591 . . . . . . . 8 ((𝑠𝐿 ∧ (𝐹𝑠) ⊆ 𝑜) → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)
3025, 26, 29syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)
3130rexlimdvaa 3136 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))
3220, 31impbid 212 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜 ↔ ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
3332imbi2d 340 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → ((𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜) ↔ (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
3433ralbidv 3157 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
3534pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
365, 35bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  fBascfbas 21259  filGencfg 21260  TopOnctopon 22804  Filcfil 23739   fLimf cflf 23829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-ntr 22914  df-nei 22992  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834
This theorem is referenced by:  lmflf  23899  eltsms  24027
  Copyright terms: Public domain W3C validator