MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flffbas Structured version   Visualization version   GIF version

Theorem flffbas 22595
Description: Limit points of a function can be defined using filter bases. (Contributed by Jeff Hankins, 9-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
flffbas.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
flffbas ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝐵,𝑜,𝑠   𝑜,𝐹,𝑠   𝑜,𝐽,𝑠   𝑜,𝐿,𝑠   𝑜,𝑋,𝑠   𝑜,𝑌,𝑠

Proof of Theorem flffbas
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 flffbas.l . . . 4 𝐿 = (𝑌filGen𝐵)
2 fgcl 22478 . . . 4 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
31, 2eqeltrid 2915 . . 3 (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
4 isflf 22593 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))))
53, 4syl3an2 1159 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))))
61eleq2i 2902 . . . . . . . 8 (𝑡𝐿𝑡 ∈ (𝑌filGen𝐵))
7 elfg 22471 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → (𝑡 ∈ (𝑌filGen𝐵) ↔ (𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡)))
873ad2ant2 1129 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ (𝑌filGen𝐵) ↔ (𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡)))
9 sstr2 3972 . . . . . . . . . . . . . . . 16 ((𝐹𝑠) ⊆ (𝐹𝑡) → ((𝐹𝑡) ⊆ 𝑜 → (𝐹𝑠) ⊆ 𝑜))
10 imass2 5958 . . . . . . . . . . . . . . . 16 (𝑠𝑡 → (𝐹𝑠) ⊆ (𝐹𝑡))
119, 10syl11 33 . . . . . . . . . . . . . . 15 ((𝐹𝑡) ⊆ 𝑜 → (𝑠𝑡 → (𝐹𝑠) ⊆ 𝑜))
1211adantl 484 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐹𝑡) ⊆ 𝑜) → (𝑠𝑡 → (𝐹𝑠) ⊆ 𝑜))
1312reximdv 3271 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐹𝑡) ⊆ 𝑜) → (∃𝑠𝐵 𝑠𝑡 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
1413ex 415 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐹𝑡) ⊆ 𝑜 → (∃𝑠𝐵 𝑠𝑡 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1514com23 86 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠𝐵 𝑠𝑡 → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1615adantld 493 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
178, 16sylbid 242 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ (𝑌filGen𝐵) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1817adantr 483 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (𝑡 ∈ (𝑌filGen𝐵) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
196, 18syl5bi 244 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (𝑡𝐿 → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
2019rexlimdv 3281 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
21 ssfg 22472 . . . . . . . . . . . 12 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
2221, 1sseqtrrdi 4016 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → 𝐵𝐿)
2322sselda 3965 . . . . . . . . . 10 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝐿)
24233ad2antl2 1181 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠𝐵) → 𝑠𝐿)
2524ad2ant2r 745 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → 𝑠𝐿)
26 simprr 771 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → (𝐹𝑠) ⊆ 𝑜)
27 imaeq2 5918 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
2827sseq1d 3996 . . . . . . . . 9 (𝑡 = 𝑠 → ((𝐹𝑡) ⊆ 𝑜 ↔ (𝐹𝑠) ⊆ 𝑜))
2928rspcev 3621 . . . . . . . 8 ((𝑠𝐿 ∧ (𝐹𝑠) ⊆ 𝑜) → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)
3025, 26, 29syl2anc 586 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)
3130rexlimdvaa 3283 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))
3220, 31impbid 214 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜 ↔ ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
3332imbi2d 343 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → ((𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜) ↔ (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
3433ralbidv 3195 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
3534pm5.32da 581 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
365, 35bitrd 281 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  wrex 3137  wss 3934  cima 5551  wf 6344  cfv 6348  (class class class)co 7148  fBascfbas 20525  filGencfg 20526  TopOnctopon 21510  Filcfil 22445   fLimf cflf 22535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-map 8400  df-fbas 20534  df-fg 20535  df-top 21494  df-topon 21511  df-ntr 21620  df-nei 21698  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540
This theorem is referenced by:  lmflf  22605  eltsms  22733
  Copyright terms: Public domain W3C validator