Step | Hyp | Ref
| Expression |
1 | | flffbas.l |
. . . 4
⊢ 𝐿 = (𝑌filGen𝐵) |
2 | | fgcl 22937 |
. . . 4
⊢ (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌)) |
3 | 1, 2 | eqeltrid 2843 |
. . 3
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌)) |
4 | | isflf 23052 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∃𝑡 ∈ 𝐿 (𝐹 “ 𝑡) ⊆ 𝑜)))) |
5 | 3, 4 | syl3an2 1162 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∃𝑡 ∈ 𝐿 (𝐹 “ 𝑡) ⊆ 𝑜)))) |
6 | 1 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑡 ∈ 𝐿 ↔ 𝑡 ∈ (𝑌filGen𝐵)) |
7 | | elfg 22930 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (fBas‘𝑌) → (𝑡 ∈ (𝑌filGen𝐵) ↔ (𝑡 ⊆ 𝑌 ∧ ∃𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡))) |
8 | 7 | 3ad2ant2 1132 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑡 ∈ (𝑌filGen𝐵) ↔ (𝑡 ⊆ 𝑌 ∧ ∃𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡))) |
9 | | sstr2 3924 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 “ 𝑠) ⊆ (𝐹 “ 𝑡) → ((𝐹 “ 𝑡) ⊆ 𝑜 → (𝐹 “ 𝑠) ⊆ 𝑜)) |
10 | | imass2 5999 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ⊆ 𝑡 → (𝐹 “ 𝑠) ⊆ (𝐹 “ 𝑡)) |
11 | 9, 10 | syl11 33 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 “ 𝑡) ⊆ 𝑜 → (𝑠 ⊆ 𝑡 → (𝐹 “ 𝑠) ⊆ 𝑜)) |
12 | 11 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐹 “ 𝑡) ⊆ 𝑜) → (𝑠 ⊆ 𝑡 → (𝐹 “ 𝑠) ⊆ 𝑜)) |
13 | 12 | reximdv 3201 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ (𝐹 “ 𝑡) ⊆ 𝑜) → (∃𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 → ∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜)) |
14 | 13 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐹 “ 𝑡) ⊆ 𝑜 → (∃𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 → ∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜))) |
15 | 14 | com23 86 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∃𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡 → ((𝐹 “ 𝑡) ⊆ 𝑜 → ∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜))) |
16 | 15 | adantld 490 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑡 ⊆ 𝑌 ∧ ∃𝑠 ∈ 𝐵 𝑠 ⊆ 𝑡) → ((𝐹 “ 𝑡) ⊆ 𝑜 → ∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜))) |
17 | 8, 16 | sylbid 239 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑡 ∈ (𝑌filGen𝐵) → ((𝐹 “ 𝑡) ⊆ 𝑜 → ∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜))) |
18 | 17 | adantr 480 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (𝑡 ∈ (𝑌filGen𝐵) → ((𝐹 “ 𝑡) ⊆ 𝑜 → ∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜))) |
19 | 6, 18 | syl5bi 241 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (𝑡 ∈ 𝐿 → ((𝐹 “ 𝑡) ⊆ 𝑜 → ∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜))) |
20 | 19 | rexlimdv 3211 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∃𝑡 ∈ 𝐿 (𝐹 “ 𝑡) ⊆ 𝑜 → ∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜)) |
21 | | ssfg 22931 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵)) |
22 | 21, 1 | sseqtrrdi 3968 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ 𝐿) |
23 | 22 | sselda 3917 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠 ∈ 𝐵) → 𝑠 ∈ 𝐿) |
24 | 23 | 3ad2antl2 1184 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑠 ∈ 𝐵) → 𝑠 ∈ 𝐿) |
25 | 24 | ad2ant2r 743 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ (𝑠 ∈ 𝐵 ∧ (𝐹 “ 𝑠) ⊆ 𝑜)) → 𝑠 ∈ 𝐿) |
26 | | simprr 769 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ (𝑠 ∈ 𝐵 ∧ (𝐹 “ 𝑠) ⊆ 𝑜)) → (𝐹 “ 𝑠) ⊆ 𝑜) |
27 | | imaeq2 5954 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑠 → (𝐹 “ 𝑡) = (𝐹 “ 𝑠)) |
28 | 27 | sseq1d 3948 |
. . . . . . . . 9
⊢ (𝑡 = 𝑠 → ((𝐹 “ 𝑡) ⊆ 𝑜 ↔ (𝐹 “ 𝑠) ⊆ 𝑜)) |
29 | 28 | rspcev 3552 |
. . . . . . . 8
⊢ ((𝑠 ∈ 𝐿 ∧ (𝐹 “ 𝑠) ⊆ 𝑜) → ∃𝑡 ∈ 𝐿 (𝐹 “ 𝑡) ⊆ 𝑜) |
30 | 25, 26, 29 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) ∧ (𝑠 ∈ 𝐵 ∧ (𝐹 “ 𝑠) ⊆ 𝑜)) → ∃𝑡 ∈ 𝐿 (𝐹 “ 𝑡) ⊆ 𝑜) |
31 | 30 | rexlimdvaa 3213 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜 → ∃𝑡 ∈ 𝐿 (𝐹 “ 𝑡) ⊆ 𝑜)) |
32 | 20, 31 | impbid 211 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∃𝑡 ∈ 𝐿 (𝐹 “ 𝑡) ⊆ 𝑜 ↔ ∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜)) |
33 | 32 | imbi2d 340 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → ((𝐴 ∈ 𝑜 → ∃𝑡 ∈ 𝐿 (𝐹 “ 𝑡) ⊆ 𝑜) ↔ (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜))) |
34 | 33 | ralbidv 3120 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝐴 ∈ 𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∃𝑡 ∈ 𝐿 (𝐹 “ 𝑡) ⊆ 𝑜) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜))) |
35 | 34 | pm5.32da 578 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∃𝑡 ∈ 𝐿 (𝐹 “ 𝑡) ⊆ 𝑜)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜)))) |
36 | 5, 35 | bitrd 278 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐵 (𝐹 “ 𝑠) ⊆ 𝑜)))) |