MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flffbas Structured version   Visualization version   GIF version

Theorem flffbas 23882
Description: Limit points of a function can be defined using filter bases. (Contributed by Jeff Hankins, 9-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
flffbas.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
flffbas ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
Distinct variable groups:   𝑜,𝑠,𝐴   𝐵,𝑜,𝑠   𝑜,𝐹,𝑠   𝑜,𝐽,𝑠   𝑜,𝐿,𝑠   𝑜,𝑋,𝑠   𝑜,𝑌,𝑠

Proof of Theorem flffbas
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 flffbas.l . . . 4 𝐿 = (𝑌filGen𝐵)
2 fgcl 23765 . . . 4 (𝐵 ∈ (fBas‘𝑌) → (𝑌filGen𝐵) ∈ (Fil‘𝑌))
31, 2eqeltrid 2832 . . 3 (𝐵 ∈ (fBas‘𝑌) → 𝐿 ∈ (Fil‘𝑌))
4 isflf 23880 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))))
53, 4syl3an2 1164 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))))
61eleq2i 2820 . . . . . . . 8 (𝑡𝐿𝑡 ∈ (𝑌filGen𝐵))
7 elfg 23758 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → (𝑡 ∈ (𝑌filGen𝐵) ↔ (𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡)))
873ad2ant2 1134 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ (𝑌filGen𝐵) ↔ (𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡)))
9 sstr2 3953 . . . . . . . . . . . . . . . 16 ((𝐹𝑠) ⊆ (𝐹𝑡) → ((𝐹𝑡) ⊆ 𝑜 → (𝐹𝑠) ⊆ 𝑜))
10 imass2 6073 . . . . . . . . . . . . . . . 16 (𝑠𝑡 → (𝐹𝑠) ⊆ (𝐹𝑡))
119, 10syl11 33 . . . . . . . . . . . . . . 15 ((𝐹𝑡) ⊆ 𝑜 → (𝑠𝑡 → (𝐹𝑠) ⊆ 𝑜))
1211adantl 481 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐹𝑡) ⊆ 𝑜) → (𝑠𝑡 → (𝐹𝑠) ⊆ 𝑜))
1312reximdv 3148 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝐹𝑡) ⊆ 𝑜) → (∃𝑠𝐵 𝑠𝑡 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
1413ex 412 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐹𝑡) ⊆ 𝑜 → (∃𝑠𝐵 𝑠𝑡 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1514com23 86 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑠𝐵 𝑠𝑡 → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1615adantld 490 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑡𝑌 ∧ ∃𝑠𝐵 𝑠𝑡) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
178, 16sylbid 240 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑡 ∈ (𝑌filGen𝐵) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
1817adantr 480 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (𝑡 ∈ (𝑌filGen𝐵) → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
196, 18biimtrid 242 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (𝑡𝐿 → ((𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
2019rexlimdv 3132 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
21 ssfg 23759 . . . . . . . . . . . 12 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
2221, 1sseqtrrdi 3988 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → 𝐵𝐿)
2322sselda 3946 . . . . . . . . . 10 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝐿)
24233ad2antl2 1187 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠𝐵) → 𝑠𝐿)
2524ad2ant2r 747 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → 𝑠𝐿)
26 simprr 772 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → (𝐹𝑠) ⊆ 𝑜)
27 imaeq2 6027 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
2827sseq1d 3978 . . . . . . . . 9 (𝑡 = 𝑠 → ((𝐹𝑡) ⊆ 𝑜 ↔ (𝐹𝑠) ⊆ 𝑜))
2928rspcev 3588 . . . . . . . 8 ((𝑠𝐿 ∧ (𝐹𝑠) ⊆ 𝑜) → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)
3025, 26, 29syl2anc 584 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) ∧ (𝑠𝐵 ∧ (𝐹𝑠) ⊆ 𝑜)) → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)
3130rexlimdvaa 3135 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜))
3220, 31impbid 212 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜 ↔ ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))
3332imbi2d 340 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → ((𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜) ↔ (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
3433ralbidv 3156 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜)))
3534pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑡𝐿 (𝐹𝑡) ⊆ 𝑜)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
365, 35bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∃𝑠𝐵 (𝐹𝑠) ⊆ 𝑜))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  fBascfbas 21252  filGencfg 21253  TopOnctopon 22797  Filcfil 23732   fLimf cflf 23822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-fbas 21261  df-fg 21262  df-top 22781  df-topon 22798  df-ntr 22907  df-nei 22985  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827
This theorem is referenced by:  lmflf  23892  eltsms  24020
  Copyright terms: Public domain W3C validator