Proof of Theorem isflf
Step | Hyp | Ref
| Expression |
1 | | flfval 23141 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))) |
2 | 1 | eleq2d 2824 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ 𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))) |
3 | | simp1 1135 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
4 | | toponmax 22075 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
5 | 4 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝑋 ∈ 𝐽) |
6 | | filfbas 22999 |
. . . . 5
⊢ (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌)) |
7 | 6 | 3ad2ant2 1133 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝐿 ∈ (fBas‘𝑌)) |
8 | | simp3 1137 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝐹:𝑌⟶𝑋) |
9 | | fmfil 23095 |
. . . 4
⊢ ((𝑋 ∈ 𝐽 ∧ 𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) |
10 | 5, 7, 8, 9 | syl3anc 1370 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) |
11 | | flimopn 23126 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿))))) |
12 | 3, 10, 11 | syl2anc 584 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿))))) |
13 | | toponss 22076 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ 𝑋) |
14 | 3, 13 | sylan 580 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) → 𝑜 ⊆ 𝑋) |
15 | | elfm 23098 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐽 ∧ 𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑜 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
16 | 5, 7, 8, 15 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑜 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
17 | 16 | adantr 481 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) → (𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑜 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
18 | 14, 17 | mpbirand 704 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) → (𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜)) |
19 | 18 | imbi2d 341 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) → ((𝐴 ∈ 𝑜 → 𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
20 | 19 | ralbidva 3111 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿)) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜))) |
21 | 20 | anbi2d 629 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → 𝑜 ∈ ((𝑋 FilMap 𝐹)‘𝐿))) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜)))) |
22 | 2, 12, 21 | 3bitrd 305 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑜)))) |