MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfnei Structured version   Visualization version   GIF version

Theorem flfnei 22599
Description: The property of being a limit point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 9-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
flfnei ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
Distinct variable groups:   𝑛,𝑠,𝐹   𝐴,𝑛   𝑛,𝐽,𝑠   𝑛,𝐿,𝑠   𝑛,𝑋,𝑠   𝑛,𝑌,𝑠
Allowed substitution hint:   𝐴(𝑠)

Proof of Theorem flfnei
StepHypRef Expression
1 flfval 22598 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
21eleq2d 2898 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ 𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))))
3 simp1 1132 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4 toponmax 21534 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
543ad2ant1 1129 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋𝐽)
6 filfbas 22456 . . . . 5 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
763ad2ant2 1130 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐿 ∈ (fBas‘𝑌))
8 simp3 1134 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
9 fmfil 22552 . . . 4 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
105, 7, 8, 9syl3anc 1367 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
11 elflim 22579 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿))))
123, 10, 11syl2anc 586 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿))))
13 dfss3 3956 . . . 4 (((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿))
14 topontop 21521 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
15143ad2ant1 1129 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐽 ∈ Top)
16 eqid 2821 . . . . . . . . 9 𝐽 = 𝐽
1716neii1 21714 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 𝐽)
1815, 17sylan 582 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 𝐽)
19 toponuni 21522 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
20193ad2ant1 1129 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋 = 𝐽)
2120adantr 483 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑋 = 𝐽)
2218, 21sseqtrrd 4008 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛𝑋)
23 elfm 22555 . . . . . . . 8 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑛𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
245, 7, 8, 23syl3anc 1367 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑛𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
2524baibd 542 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛𝑋) → (𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛))
2622, 25syldan 593 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛))
2726ralbidva 3196 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛))
2813, 27syl5bb 285 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛))
2928anbi2d 630 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
302, 12, 293bitrd 307 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  wss 3936  {csn 4567   cuni 4838  cima 5558  wf 6351  cfv 6355  (class class class)co 7156  fBascfbas 20533  Topctop 21501  TopOnctopon 21518  neicnei 21705  Filcfil 22453   FilMap cfm 22541   fLim cflim 22542   fLimf cflf 22543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8408  df-fbas 20542  df-fg 20543  df-top 21502  df-topon 21519  df-nei 21706  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548
This theorem is referenced by:  flfneii  22600  cnextcn  22675  cnextfres1  22676
  Copyright terms: Public domain W3C validator