MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfnei Structured version   Visualization version   GIF version

Theorem flfnei 23901
Description: The property of being a limit point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 9-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
flfnei ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
Distinct variable groups:   𝑛,𝑠,𝐹   𝐴,𝑛   𝑛,𝐽,𝑠   𝑛,𝐿,𝑠   𝑛,𝑋,𝑠   𝑛,𝑌,𝑠
Allowed substitution hint:   𝐴(𝑠)

Proof of Theorem flfnei
StepHypRef Expression
1 flfval 23900 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
21eleq2d 2817 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ 𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))))
3 simp1 1136 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4 toponmax 22836 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
543ad2ant1 1133 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋𝐽)
6 filfbas 23758 . . . . 5 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
763ad2ant2 1134 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐿 ∈ (fBas‘𝑌))
8 simp3 1138 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
9 fmfil 23854 . . . 4 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
105, 7, 8, 9syl3anc 1373 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
11 elflim 23881 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿))))
123, 10, 11syl2anc 584 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿))))
13 dfss3 3918 . . . 4 (((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿))
14 topontop 22823 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
15143ad2ant1 1133 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐽 ∈ Top)
16 eqid 2731 . . . . . . . . 9 𝐽 = 𝐽
1716neii1 23016 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 𝐽)
1815, 17sylan 580 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 𝐽)
19 toponuni 22824 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
20193ad2ant1 1133 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋 = 𝐽)
2120adantr 480 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑋 = 𝐽)
2218, 21sseqtrrd 3967 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛𝑋)
23 elfm 23857 . . . . . . . 8 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑛𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
245, 7, 8, 23syl3anc 1373 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑛𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
2524baibd 539 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛𝑋) → (𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛))
2622, 25syldan 591 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛))
2726ralbidva 3153 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛))
2813, 27bitrid 283 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛))
2928anbi2d 630 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
302, 12, 293bitrd 305 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897  {csn 4571   cuni 4854  cima 5614  wf 6472  cfv 6476  (class class class)co 7341  fBascfbas 21274  Topctop 22803  TopOnctopon 22820  neicnei 23007  Filcfil 23755   FilMap cfm 23843   fLim cflim 23844   fLimf cflf 23845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-fbas 21283  df-fg 21284  df-top 22804  df-topon 22821  df-nei 23008  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850
This theorem is referenced by:  flfneii  23902  cnextcn  23977  cnextfres1  23978
  Copyright terms: Public domain W3C validator