MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfnei Structured version   Visualization version   GIF version

Theorem flfnei 23926
Description: The property of being a limit point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 9-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Assertion
Ref Expression
flfnei ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
Distinct variable groups:   𝑛,𝑠,𝐹   𝐴,𝑛   𝑛,𝐽,𝑠   𝑛,𝐿,𝑠   𝑛,𝑋,𝑠   𝑛,𝑌,𝑠
Allowed substitution hint:   𝐴(𝑠)

Proof of Theorem flfnei
StepHypRef Expression
1 flfval 23925 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
21eleq2d 2819 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ 𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))))
3 simp1 1136 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4 toponmax 22861 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
543ad2ant1 1133 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋𝐽)
6 filfbas 23783 . . . . 5 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
763ad2ant2 1134 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐿 ∈ (fBas‘𝑌))
8 simp3 1138 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐹:𝑌𝑋)
9 fmfil 23879 . . . 4 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
105, 7, 8, 9syl3anc 1373 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
11 elflim 23906 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿))))
123, 10, 11syl2anc 584 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿))))
13 dfss3 3919 . . . 4 (((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿))
14 topontop 22848 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
15143ad2ant1 1133 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐽 ∈ Top)
16 eqid 2733 . . . . . . . . 9 𝐽 = 𝐽
1716neii1 23041 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 𝐽)
1815, 17sylan 580 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛 𝐽)
19 toponuni 22849 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
20193ad2ant1 1133 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝑋 = 𝐽)
2120adantr 480 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑋 = 𝐽)
2218, 21sseqtrrd 3968 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑛𝑋)
23 elfm 23882 . . . . . . . 8 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑛𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
245, 7, 8, 23syl3anc 1373 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑛𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
2524baibd 539 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛𝑋) → (𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛))
2622, 25syldan 591 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛))
2726ralbidva 3154 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})𝑛 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛))
2813, 27bitrid 283 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛))
2928anbi2d 630 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
302, 12, 293bitrd 305 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑛 ∈ ((nei‘𝐽)‘{𝐴})∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898  {csn 4577   cuni 4860  cima 5624  wf 6485  cfv 6489  (class class class)co 7355  fBascfbas 21288  Topctop 22828  TopOnctopon 22845  neicnei 23032  Filcfil 23780   FilMap cfm 23868   fLim cflim 23869   fLimf cflf 23870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-fbas 21297  df-fg 21298  df-top 22829  df-topon 22846  df-nei 23033  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875
This theorem is referenced by:  flfneii  23927  cnextcn  24002  cnextfres1  24003
  Copyright terms: Public domain W3C validator