![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankfu | Structured version Visualization version GIF version |
Description: An upper bound on the rank of a function. (Contributed by GΓ©rard Lang, 5-Aug-2018.) |
Ref | Expression |
---|---|
rankxpl.1 | β’ π΄ β V |
rankxpl.2 | β’ π΅ β V |
Ref | Expression |
---|---|
rankfu | β’ (πΉ:π΄βΆπ΅ β (rankβπΉ) β suc suc (rankβ(π΄ βͺ π΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 6738 | . 2 β’ (πΉ:π΄βΆπ΅ β πΉ β (π΄ Γ π΅)) | |
2 | rankxpl.1 | . . . . 5 β’ π΄ β V | |
3 | rankxpl.2 | . . . . 5 β’ π΅ β V | |
4 | 2, 3 | xpex 7736 | . . . 4 β’ (π΄ Γ π΅) β V |
5 | 4 | rankss 9843 | . . 3 β’ (πΉ β (π΄ Γ π΅) β (rankβπΉ) β (rankβ(π΄ Γ π΅))) |
6 | 2, 3 | rankxpu 9870 | . . 3 β’ (rankβ(π΄ Γ π΅)) β suc suc (rankβ(π΄ βͺ π΅)) |
7 | 5, 6 | sstrdi 3989 | . 2 β’ (πΉ β (π΄ Γ π΅) β (rankβπΉ) β suc suc (rankβ(π΄ βͺ π΅))) |
8 | 1, 7 | syl 17 | 1 β’ (πΉ:π΄βΆπ΅ β (rankβπΉ) β suc suc (rankβ(π΄ βͺ π΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 Vcvv 3468 βͺ cun 3941 β wss 3943 Γ cxp 5667 suc csuc 6359 βΆwf 6532 βcfv 6536 rankcrnk 9757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-reg 9586 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-r1 9758 df-rank 9759 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |