Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankfu | Structured version Visualization version GIF version |
Description: An upper bound on the rank of a function. (Contributed by Gérard Lang, 5-Aug-2018.) |
Ref | Expression |
---|---|
rankxpl.1 | ⊢ 𝐴 ∈ V |
rankxpl.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
rankfu | ⊢ (𝐹:𝐴⟶𝐵 → (rank‘𝐹) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssxp 6625 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
2 | rankxpl.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
3 | rankxpl.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
4 | 2, 3 | xpex 7595 | . . . 4 ⊢ (𝐴 × 𝐵) ∈ V |
5 | 4 | rankss 9606 | . . 3 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (rank‘𝐹) ⊆ (rank‘(𝐴 × 𝐵))) |
6 | 2, 3 | rankxpu 9633 | . . 3 ⊢ (rank‘(𝐴 × 𝐵)) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵)) |
7 | 5, 6 | sstrdi 3938 | . 2 ⊢ (𝐹 ⊆ (𝐴 × 𝐵) → (rank‘𝐹) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵))) |
8 | 1, 7 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → (rank‘𝐹) ⊆ suc suc (rank‘(𝐴 ∪ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Vcvv 3431 ∪ cun 3890 ⊆ wss 3892 × cxp 5587 suc csuc 6266 ⟶wf 6427 ‘cfv 6431 rankcrnk 9520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-reg 9327 ax-inf2 9375 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-om 7705 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-r1 9521 df-rank 9522 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |