| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > postcofval | Structured version Visualization version GIF version | ||
| Description: Value of the post-composition functor as a curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| postcofval.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| postcofval.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
| postcofval.o | ⊢ ⚬ = (〈𝑅, 𝑄〉 curryF (〈𝐶, 𝐷〉 ∘F 𝐸)) |
| postcofval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) |
| postcofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| postcofval.k | ⊢ 𝐾 = ((1st ‘ ⚬ )‘𝐹) |
| Ref | Expression |
|---|---|
| postcofval | ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹 ∘func 𝑔)), (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝑔)‘𝑥)(2nd ‘𝐹)((1st ‘ℎ)‘𝑥))‘(𝑎‘𝑥)))))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | postcofval.o | . . 3 ⊢ ⚬ = (〈𝑅, 𝑄〉 curryF (〈𝐶, 𝐷〉 ∘F 𝐸)) | |
| 2 | postcofval.r | . . . 4 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
| 3 | 2 | fucbas 17889 | . . 3 ⊢ (𝐷 Func 𝐸) = (Base‘𝑅) |
| 4 | postcofval.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) | |
| 5 | 4 | func1st2nd 49081 | . . . . 5 ⊢ (𝜑 → (1st ‘𝐹)(𝐷 Func 𝐸)(2nd ‘𝐹)) |
| 6 | 5 | funcrcl2 49084 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 7 | 5 | funcrcl3 49085 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 8 | 2, 6, 7 | fuccat 17899 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Cat) |
| 9 | postcofval.q | . . . 4 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 10 | postcofval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 11 | 9, 10, 6 | fuccat 17899 | . . 3 ⊢ (𝜑 → 𝑄 ∈ Cat) |
| 12 | 2, 9 | oveq12i 7365 | . . . 4 ⊢ (𝑅 ×c 𝑄) = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) |
| 13 | eqid 2729 | . . . 4 ⊢ (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸) | |
| 14 | 12, 13, 10, 6, 7 | fucofunca 49365 | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) ∈ ((𝑅 ×c 𝑄) Func (𝐶 FuncCat 𝐸))) |
| 15 | 9 | fucbas 17889 | . . 3 ⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
| 16 | postcofval.k | . . 3 ⊢ 𝐾 = ((1st ‘ ⚬ )‘𝐹) | |
| 17 | eqid 2729 | . . . 4 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
| 18 | 9, 17 | fuchom 17890 | . . 3 ⊢ (𝐶 Nat 𝐷) = (Hom ‘𝑄) |
| 19 | eqid 2729 | . . 3 ⊢ (Id‘𝑅) = (Id‘𝑅) | |
| 20 | 1, 3, 8, 11, 14, 15, 4, 16, 18, 19 | curf1 18150 | . 2 ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))𝑔)), (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (((Id‘𝑅)‘𝐹)(〈𝐹, 𝑔〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈𝐹, ℎ〉)𝑎)))〉) |
| 21 | eqidd 2730 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))) | |
| 22 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → 𝑔 ∈ (𝐶 Func 𝐷)) | |
| 23 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → 𝐹 ∈ (𝐷 Func 𝐸)) |
| 24 | 21, 22, 23 | fuco11b 49342 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (𝐹(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))𝑔) = (𝐹 ∘func 𝑔)) |
| 25 | 24 | mpteq2dva 5188 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))𝑔)) = (𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹 ∘func 𝑔))) |
| 26 | eqidd 2730 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ)) → (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))) | |
| 27 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ)) → 𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ)) | |
| 28 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ)) → 𝐹 ∈ (𝐷 Func 𝐸)) |
| 29 | 26, 19, 2, 27, 28 | fucolid 49366 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ)) → (((Id‘𝑅)‘𝐹)(〈𝐹, 𝑔〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈𝐹, ℎ〉)𝑎) = (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝑔)‘𝑥)(2nd ‘𝐹)((1st ‘ℎ)‘𝑥))‘(𝑎‘𝑥)))) |
| 30 | 29 | mpteq2dva 5188 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (((Id‘𝑅)‘𝐹)(〈𝐹, 𝑔〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈𝐹, ℎ〉)𝑎)) = (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝑔)‘𝑥)(2nd ‘𝐹)((1st ‘ℎ)‘𝑥))‘(𝑎‘𝑥))))) |
| 31 | 30 | mpoeq3dv 7432 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (((Id‘𝑅)‘𝐹)(〈𝐹, 𝑔〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈𝐹, ℎ〉)𝑎))) = (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝑔)‘𝑥)(2nd ‘𝐹)((1st ‘ℎ)‘𝑥))‘(𝑎‘𝑥)))))) |
| 32 | 25, 31 | opeq12d 4835 | . 2 ⊢ (𝜑 → 〈(𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))𝑔)), (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (((Id‘𝑅)‘𝐹)(〈𝐹, 𝑔〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈𝐹, ℎ〉)𝑎)))〉 = 〈(𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹 ∘func 𝑔)), (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝑔)‘𝑥)(2nd ‘𝐹)((1st ‘ℎ)‘𝑥))‘(𝑎‘𝑥)))))〉) |
| 33 | 20, 32 | eqtrd 2764 | 1 ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹 ∘func 𝑔)), (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝑔)‘𝑥)(2nd ‘𝐹)((1st ‘ℎ)‘𝑥))‘(𝑎‘𝑥)))))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4585 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1st c1st 7929 2nd c2nd 7930 Basecbs 17139 Catccat 17589 Idccid 17590 Func cfunc 17780 ∘func ccofu 17782 Nat cnat 17870 FuncCat cfuc 17871 ×c cxpc 18093 curryF ccurf 18135 ∘F cfuco 49321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-fz 13430 df-struct 17077 df-slot 17112 df-ndx 17124 df-base 17140 df-hom 17204 df-cco 17205 df-cat 17593 df-cid 17594 df-func 17784 df-cofu 17786 df-nat 17872 df-fuc 17873 df-xpc 18097 df-curf 18139 df-fuco 49322 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |