| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > postcofval | Structured version Visualization version GIF version | ||
| Description: Value of the post-composition functor as a curry of the functor composition bifunctor. (Contributed by Zhi Wang, 11-Oct-2025.) |
| Ref | Expression |
|---|---|
| postcofval.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐷) |
| postcofval.r | ⊢ 𝑅 = (𝐷 FuncCat 𝐸) |
| postcofval.o | ⊢ ⚬ = (〈𝑅, 𝑄〉 curryF (〈𝐶, 𝐷〉 ∘F 𝐸)) |
| postcofval.f | ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) |
| postcofval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| postcofval.k | ⊢ 𝐾 = ((1st ‘ ⚬ )‘𝐹) |
| Ref | Expression |
|---|---|
| postcofval | ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹 ∘func 𝑔)), (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝑔)‘𝑥)(2nd ‘𝐹)((1st ‘ℎ)‘𝑥))‘(𝑎‘𝑥)))))〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | postcofval.o | . . 3 ⊢ ⚬ = (〈𝑅, 𝑄〉 curryF (〈𝐶, 𝐷〉 ∘F 𝐸)) | |
| 2 | postcofval.r | . . . 4 ⊢ 𝑅 = (𝐷 FuncCat 𝐸) | |
| 3 | 2 | fucbas 17980 | . . 3 ⊢ (𝐷 Func 𝐸) = (Base‘𝑅) |
| 4 | relfunc 17879 | . . . . . 6 ⊢ Rel (𝐷 Func 𝐸) | |
| 5 | postcofval.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐷 Func 𝐸)) | |
| 6 | 1st2ndbr 8049 | . . . . . 6 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐹 ∈ (𝐷 Func 𝐸)) → (1st ‘𝐹)(𝐷 Func 𝐸)(2nd ‘𝐹)) | |
| 7 | 4, 5, 6 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (1st ‘𝐹)(𝐷 Func 𝐸)(2nd ‘𝐹)) |
| 8 | 7 | funcrcl2 48937 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 9 | 7 | funcrcl3 48938 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 10 | 2, 8, 9 | fuccat 17990 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Cat) |
| 11 | postcofval.q | . . . 4 ⊢ 𝑄 = (𝐶 FuncCat 𝐷) | |
| 12 | postcofval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 13 | 11, 12, 8 | fuccat 17990 | . . 3 ⊢ (𝜑 → 𝑄 ∈ Cat) |
| 14 | 2, 11 | oveq12i 7425 | . . . 4 ⊢ (𝑅 ×c 𝑄) = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) |
| 15 | eqid 2734 | . . . 4 ⊢ (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸) | |
| 16 | 14, 15, 12, 8, 9 | fucofunca 49105 | . . 3 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) ∈ ((𝑅 ×c 𝑄) Func (𝐶 FuncCat 𝐸))) |
| 17 | 11 | fucbas 17980 | . . 3 ⊢ (𝐶 Func 𝐷) = (Base‘𝑄) |
| 18 | postcofval.k | . . 3 ⊢ 𝐾 = ((1st ‘ ⚬ )‘𝐹) | |
| 19 | eqid 2734 | . . . 4 ⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) | |
| 20 | 11, 19 | fuchom 17981 | . . 3 ⊢ (𝐶 Nat 𝐷) = (Hom ‘𝑄) |
| 21 | eqid 2734 | . . 3 ⊢ (Id‘𝑅) = (Id‘𝑅) | |
| 22 | 1, 3, 10, 13, 16, 17, 5, 18, 20, 21 | curf1 18241 | . 2 ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))𝑔)), (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (((Id‘𝑅)‘𝐹)(〈𝐹, 𝑔〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈𝐹, ℎ〉)𝑎)))〉) |
| 23 | eqidd 2735 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = (1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))) | |
| 24 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → 𝑔 ∈ (𝐶 Func 𝐷)) | |
| 25 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → 𝐹 ∈ (𝐷 Func 𝐸)) |
| 26 | 23, 24, 25 | fuco11b 49082 | . . . 4 ⊢ ((𝜑 ∧ 𝑔 ∈ (𝐶 Func 𝐷)) → (𝐹(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))𝑔) = (𝐹 ∘func 𝑔)) |
| 27 | 26 | mpteq2dva 5222 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))𝑔)) = (𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹 ∘func 𝑔))) |
| 28 | eqidd 2735 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ)) → (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸)) = (2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))) | |
| 29 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ)) → 𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ)) | |
| 30 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ)) → 𝐹 ∈ (𝐷 Func 𝐸)) |
| 31 | 28, 21, 2, 29, 30 | fucolid 49106 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ)) → (((Id‘𝑅)‘𝐹)(〈𝐹, 𝑔〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈𝐹, ℎ〉)𝑎) = (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝑔)‘𝑥)(2nd ‘𝐹)((1st ‘ℎ)‘𝑥))‘(𝑎‘𝑥)))) |
| 32 | 31 | mpteq2dva 5222 | . . . 4 ⊢ (𝜑 → (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (((Id‘𝑅)‘𝐹)(〈𝐹, 𝑔〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈𝐹, ℎ〉)𝑎)) = (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝑔)‘𝑥)(2nd ‘𝐹)((1st ‘ℎ)‘𝑥))‘(𝑎‘𝑥))))) |
| 33 | 32 | mpoeq3dv 7494 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (((Id‘𝑅)‘𝐹)(〈𝐹, 𝑔〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈𝐹, ℎ〉)𝑎))) = (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝑔)‘𝑥)(2nd ‘𝐹)((1st ‘ℎ)‘𝑥))‘(𝑎‘𝑥)))))) |
| 34 | 27, 33 | opeq12d 4861 | . 2 ⊢ (𝜑 → 〈(𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹(1st ‘(〈𝐶, 𝐷〉 ∘F 𝐸))𝑔)), (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (((Id‘𝑅)‘𝐹)(〈𝐹, 𝑔〉(2nd ‘(〈𝐶, 𝐷〉 ∘F 𝐸))〈𝐹, ℎ〉)𝑎)))〉 = 〈(𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹 ∘func 𝑔)), (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝑔)‘𝑥)(2nd ‘𝐹)((1st ‘ℎ)‘𝑥))‘(𝑎‘𝑥)))))〉) |
| 35 | 22, 34 | eqtrd 2769 | 1 ⊢ (𝜑 → 𝐾 = 〈(𝑔 ∈ (𝐶 Func 𝐷) ↦ (𝐹 ∘func 𝑔)), (𝑔 ∈ (𝐶 Func 𝐷), ℎ ∈ (𝐶 Func 𝐷) ↦ (𝑎 ∈ (𝑔(𝐶 Nat 𝐷)ℎ) ↦ (𝑥 ∈ (Base‘𝐶) ↦ ((((1st ‘𝑔)‘𝑥)(2nd ‘𝐹)((1st ‘ℎ)‘𝑥))‘(𝑎‘𝑥)))))〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 〈cop 4612 class class class wbr 5123 ↦ cmpt 5205 Rel wrel 5670 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 1st c1st 7994 2nd c2nd 7995 Basecbs 17230 Catccat 17679 Idccid 17680 Func cfunc 17871 ∘func ccofu 17873 Nat cnat 17961 FuncCat cfuc 17962 ×c cxpc 18184 curryF ccurf 18226 ∘F cfuco 49061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-map 8850 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-hom 17298 df-cco 17299 df-cat 17683 df-cid 17684 df-func 17875 df-cofu 17877 df-nat 17963 df-fuc 17964 df-xpc 18188 df-curf 18230 df-fuco 49062 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |