| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resfsupp | Structured version Visualization version GIF version | ||
| Description: If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019.) |
| Ref | Expression |
|---|---|
| resfsupp.b | ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) |
| resfsupp.e | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| resfsupp.f | ⊢ (𝜑 → Fun 𝐹) |
| resfsupp.g | ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) |
| resfsupp.s | ⊢ (𝜑 → 𝐺 finSupp 𝑍) |
| resfsupp.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resfsupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resfsupp.b | . . 3 ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) | |
| 2 | resfsupp.e | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 3 | resfsupp.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) | |
| 4 | resfsupp.s | . . . 4 ⊢ (𝜑 → 𝐺 finSupp 𝑍) | |
| 5 | 4 | fsuppimpd 9253 | . . 3 ⊢ (𝜑 → (𝐺 supp 𝑍) ∈ Fin) |
| 6 | resfsupp.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 7 | 1, 2, 3, 5, 6 | ressuppfi 9279 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 8 | resfsupp.f | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
| 9 | funisfsupp 9251 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) | |
| 10 | 8, 2, 6, 9 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) |
| 11 | 7, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 class class class wbr 5089 dom cdm 5614 ↾ cres 5616 Fun wfun 6475 (class class class)co 7346 supp csupp 8090 Fincfn 8869 finSupp cfsupp 9245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-supp 8091 df-1o 8385 df-en 8870 df-fin 8873 df-fsupp 9246 |
| This theorem is referenced by: lincext2 48495 |
| Copyright terms: Public domain | W3C validator |