MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfsupp Structured version   Visualization version   GIF version

Theorem resfsupp 9393
Description: If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019.)
Hypotheses
Ref Expression
resfsupp.b (𝜑 → (dom 𝐹𝐵) ∈ Fin)
resfsupp.e (𝜑𝐹𝑊)
resfsupp.f (𝜑 → Fun 𝐹)
resfsupp.g (𝜑𝐺 = (𝐹𝐵))
resfsupp.s (𝜑𝐺 finSupp 𝑍)
resfsupp.z (𝜑𝑍𝑉)
Assertion
Ref Expression
resfsupp (𝜑𝐹 finSupp 𝑍)

Proof of Theorem resfsupp
StepHypRef Expression
1 resfsupp.b . . 3 (𝜑 → (dom 𝐹𝐵) ∈ Fin)
2 resfsupp.e . . 3 (𝜑𝐹𝑊)
3 resfsupp.g . . 3 (𝜑𝐺 = (𝐹𝐵))
4 resfsupp.s . . . 4 (𝜑𝐺 finSupp 𝑍)
54fsuppimpd 9371 . . 3 (𝜑 → (𝐺 supp 𝑍) ∈ Fin)
6 resfsupp.z . . 3 (𝜑𝑍𝑉)
71, 2, 3, 5, 6ressuppfi 9392 . 2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
8 resfsupp.f . . 3 (𝜑 → Fun 𝐹)
9 funisfsupp 9369 . . 3 ((Fun 𝐹𝐹𝑊𝑍𝑉) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
108, 2, 6, 9syl3anc 1369 . 2 (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
117, 10mpbird 256 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2104  cdif 3944   class class class wbr 5147  dom cdm 5675  cres 5677  Fun wfun 6536  (class class class)co 7411   supp csupp 8148  Fincfn 8941   finSupp cfsupp 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-supp 8149  df-1o 8468  df-en 8942  df-fin 8945  df-fsupp 9364
This theorem is referenced by:  lincext2  47223
  Copyright terms: Public domain W3C validator