| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resfsupp | Structured version Visualization version GIF version | ||
| Description: If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019.) |
| Ref | Expression |
|---|---|
| resfsupp.b | ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) |
| resfsupp.e | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| resfsupp.f | ⊢ (𝜑 → Fun 𝐹) |
| resfsupp.g | ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) |
| resfsupp.s | ⊢ (𝜑 → 𝐺 finSupp 𝑍) |
| resfsupp.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| resfsupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resfsupp.b | . . 3 ⊢ (𝜑 → (dom 𝐹 ∖ 𝐵) ∈ Fin) | |
| 2 | resfsupp.e | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 3 | resfsupp.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝐹 ↾ 𝐵)) | |
| 4 | resfsupp.s | . . . 4 ⊢ (𝜑 → 𝐺 finSupp 𝑍) | |
| 5 | 4 | fsuppimpd 9327 | . . 3 ⊢ (𝜑 → (𝐺 supp 𝑍) ∈ Fin) |
| 6 | resfsupp.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
| 7 | 1, 2, 3, 5, 6 | ressuppfi 9353 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 8 | resfsupp.f | . . 3 ⊢ (𝜑 → Fun 𝐹) | |
| 9 | funisfsupp 9325 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑊 ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) | |
| 10 | 8, 2, 6, 9 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) |
| 11 | 7, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 class class class wbr 5110 dom cdm 5641 ↾ cres 5643 Fun wfun 6508 (class class class)co 7390 supp csupp 8142 Fincfn 8921 finSupp cfsupp 9319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-supp 8143 df-1o 8437 df-en 8922 df-fin 8925 df-fsupp 9320 |
| This theorem is referenced by: lincext2 48448 |
| Copyright terms: Public domain | W3C validator |