MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubglem2 Structured version   Visualization version   GIF version

Theorem mplsubglem2 21948
Description: Lemma for mplsubg 21949 and mpllss 21950. (Contributed by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
mplsubg.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mplsubg.u 𝑈 = (Base‘𝑃)
mplsubg.i (𝜑𝐼𝑊)
Assertion
Ref Expression
mplsubglem2 (𝜑𝑈 = {𝑔 ∈ (Base‘𝑆) ∣ (𝑔 supp (0g𝑅)) ∈ Fin})
Distinct variable groups:   𝑔,𝐼   𝜑,𝑔   𝑅,𝑔   𝑆,𝑔
Allowed substitution hints:   𝑃(𝑔)   𝑈(𝑔)   𝑊(𝑔)

Proof of Theorem mplsubglem2
StepHypRef Expression
1 mplsubg.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
2 mplsubg.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
3 eqid 2725 . . 3 (Base‘𝑆) = (Base‘𝑆)
4 eqid 2725 . . 3 (0g𝑅) = (0g𝑅)
5 mplsubg.u . . 3 𝑈 = (Base‘𝑃)
61, 2, 3, 4, 5mplbas 21937 . 2 𝑈 = {𝑔 ∈ (Base‘𝑆) ∣ 𝑔 finSupp (0g𝑅)}
72, 3psrelbasfun 21882 . . . . 5 (𝑔 ∈ (Base‘𝑆) → Fun 𝑔)
87adantl 480 . . . 4 ((𝜑𝑔 ∈ (Base‘𝑆)) → Fun 𝑔)
9 simpr 483 . . . 4 ((𝜑𝑔 ∈ (Base‘𝑆)) → 𝑔 ∈ (Base‘𝑆))
10 fvexd 6906 . . . 4 ((𝜑𝑔 ∈ (Base‘𝑆)) → (0g𝑅) ∈ V)
11 funisfsupp 9389 . . . 4 ((Fun 𝑔𝑔 ∈ (Base‘𝑆) ∧ (0g𝑅) ∈ V) → (𝑔 finSupp (0g𝑅) ↔ (𝑔 supp (0g𝑅)) ∈ Fin))
128, 9, 10, 11syl3anc 1368 . . 3 ((𝜑𝑔 ∈ (Base‘𝑆)) → (𝑔 finSupp (0g𝑅) ↔ (𝑔 supp (0g𝑅)) ∈ Fin))
1312rabbidva 3426 . 2 (𝜑 → {𝑔 ∈ (Base‘𝑆) ∣ 𝑔 finSupp (0g𝑅)} = {𝑔 ∈ (Base‘𝑆) ∣ (𝑔 supp (0g𝑅)) ∈ Fin})
146, 13eqtrid 2777 1 (𝜑𝑈 = {𝑔 ∈ (Base‘𝑆) ∣ (𝑔 supp (0g𝑅)) ∈ Fin})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  {crab 3419  Vcvv 3463   class class class wbr 5143  Fun wfun 6536  cfv 6542  (class class class)co 7415   supp csupp 8161  Fincfn 8960   finSupp cfsupp 9383  Basecbs 17177  0gc0g 17418   mPwSer cmps 21839   mPoly cmpl 21841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-om 7868  df-1st 7989  df-2nd 7990  df-supp 8162  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-fsupp 9384  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-uz 12851  df-fz 13515  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-sca 17246  df-vsca 17247  df-tset 17249  df-psr 21844  df-mpl 21846
This theorem is referenced by:  mplsubg  21949  mpllss  21950
  Copyright terms: Public domain W3C validator