MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sniffsupp Structured version   Visualization version   GIF version

Theorem sniffsupp 8864
Description: A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
sniffsupp.i (𝜑𝐼𝑉)
sniffsupp.0 (𝜑0𝑊)
sniffsupp.f 𝐹 = (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 ))
Assertion
Ref Expression
sniffsupp (𝜑𝐹 finSupp 0 )
Distinct variable groups:   𝑥,𝐼   𝑥,𝑋   𝑥, 0   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem sniffsupp
StepHypRef Expression
1 sniffsupp.f . 2 𝐹 = (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 ))
2 snfi 8584 . . . 4 {𝑋} ∈ Fin
3 eldifsni 4706 . . . . . . . 8 (𝑥 ∈ (𝐼 ∖ {𝑋}) → 𝑥𝑋)
43adantl 485 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑋})) → 𝑥𝑋)
54neneqd 3019 . . . . . 6 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑋})) → ¬ 𝑥 = 𝑋)
65iffalsed 4460 . . . . 5 ((𝜑𝑥 ∈ (𝐼 ∖ {𝑋})) → if(𝑥 = 𝑋, 𝐴, 0 ) = 0 )
7 sniffsupp.i . . . . 5 (𝜑𝐼𝑉)
86, 7suppss2 7854 . . . 4 (𝜑 → ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋})
9 ssfi 8729 . . . 4 (({𝑋} ∈ Fin ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) → ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin)
102, 8, 9sylancr 590 . . 3 (𝜑 → ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin)
11 funmpt 6381 . . . 4 Fun (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 ))
127mptexd 6975 . . . 4 (𝜑 → (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ V)
13 sniffsupp.0 . . . 4 (𝜑0𝑊)
14 funisfsupp 8829 . . . 4 ((Fun (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∧ (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ V ∧ 0𝑊) → ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ↔ ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin))
1511, 12, 13, 14mp3an2i 1463 . . 3 (𝜑 → ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ↔ ((𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin))
1610, 15mpbird 260 . 2 (𝜑 → (𝑥𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 )
171, 16eqbrtrid 5087 1 (𝜑𝐹 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  Vcvv 3480  cdif 3916  wss 3919  ifcif 4449  {csn 4549   class class class wbr 5052  cmpt 5132  Fun wfun 6337  (class class class)co 7145   supp csupp 7820  Fincfn 8499   finSupp cfsupp 8824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-supp 7821  df-1o 8092  df-er 8279  df-en 8500  df-fin 8503  df-fsupp 8825
This theorem is referenced by:  dprdfid  19135  snifpsrbag  20139  mnringmulrcld  40793
  Copyright terms: Public domain W3C validator