| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sniffsupp | Structured version Visualization version GIF version | ||
| Description: A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019.) |
| Ref | Expression |
|---|---|
| sniffsupp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| sniffsupp.0 | ⊢ (𝜑 → 0 ∈ 𝑊) |
| sniffsupp.f | ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) |
| Ref | Expression |
|---|---|
| sniffsupp | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sniffsupp.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) | |
| 2 | snfi 8975 | . . . 4 ⊢ {𝑋} ∈ Fin | |
| 3 | eldifsni 4744 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐼 ∖ {𝑋}) → 𝑥 ≠ 𝑋) | |
| 4 | 3 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑋})) → 𝑥 ≠ 𝑋) |
| 5 | 4 | neneqd 2930 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑋})) → ¬ 𝑥 = 𝑋) |
| 6 | 5 | iffalsed 4489 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑋})) → if(𝑥 = 𝑋, 𝐴, 0 ) = 0 ) |
| 7 | sniffsupp.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 8 | 6, 7 | suppss2 8140 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) |
| 9 | ssfi 9097 | . . . 4 ⊢ (({𝑋} ∈ Fin ∧ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin) | |
| 10 | 2, 8, 9 | sylancr 587 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin) |
| 11 | funmpt 6524 | . . . 4 ⊢ Fun (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) | |
| 12 | 7 | mptexd 7164 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ V) |
| 13 | sniffsupp.0 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑊) | |
| 14 | funisfsupp 9276 | . . . 4 ⊢ ((Fun (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∧ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ V ∧ 0 ∈ 𝑊) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin)) | |
| 15 | 11, 12, 13, 14 | mp3an2i 1468 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin)) |
| 16 | 10, 15 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ) |
| 17 | 1, 16 | eqbrtrid 5130 | 1 ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ∖ cdif 3902 ⊆ wss 3905 ifcif 4478 {csn 4579 class class class wbr 5095 ↦ cmpt 5176 Fun wfun 6480 (class class class)co 7353 supp csupp 8100 Fincfn 8879 finSupp cfsupp 9270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-supp 8101 df-1o 8395 df-en 8880 df-fin 8883 df-fsupp 9271 |
| This theorem is referenced by: dprdfid 19916 snifpsrbag 21845 evlsbagval 42539 mhpind 42567 cantnfresb 43297 mnringmulrcld 44201 |
| Copyright terms: Public domain | W3C validator |