![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sniffsupp | Structured version Visualization version GIF version |
Description: A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019.) |
Ref | Expression |
---|---|
sniffsupp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
sniffsupp.0 | ⊢ (𝜑 → 0 ∈ 𝑊) |
sniffsupp.f | ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) |
Ref | Expression |
---|---|
sniffsupp | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sniffsupp.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) | |
2 | snfi 9046 | . . . 4 ⊢ {𝑋} ∈ Fin | |
3 | eldifsni 4788 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐼 ∖ {𝑋}) → 𝑥 ≠ 𝑋) | |
4 | 3 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑋})) → 𝑥 ≠ 𝑋) |
5 | 4 | neneqd 2939 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑋})) → ¬ 𝑥 = 𝑋) |
6 | 5 | iffalsed 4534 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑋})) → if(𝑥 = 𝑋, 𝐴, 0 ) = 0 ) |
7 | sniffsupp.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
8 | 6, 7 | suppss2 8186 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) |
9 | ssfi 9175 | . . . 4 ⊢ (({𝑋} ∈ Fin ∧ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin) | |
10 | 2, 8, 9 | sylancr 586 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin) |
11 | funmpt 6580 | . . . 4 ⊢ Fun (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) | |
12 | 7 | mptexd 7221 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ V) |
13 | sniffsupp.0 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑊) | |
14 | funisfsupp 9369 | . . . 4 ⊢ ((Fun (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∧ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ V ∧ 0 ∈ 𝑊) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin)) | |
15 | 11, 12, 13, 14 | mp3an2i 1462 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin)) |
16 | 10, 15 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ) |
17 | 1, 16 | eqbrtrid 5176 | 1 ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 Vcvv 3468 ∖ cdif 3940 ⊆ wss 3943 ifcif 4523 {csn 4623 class class class wbr 5141 ↦ cmpt 5224 Fun wfun 6531 (class class class)co 7405 supp csupp 8146 Fincfn 8941 finSupp cfsupp 9363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-supp 8147 df-1o 8467 df-en 8942 df-fin 8945 df-fsupp 9364 |
This theorem is referenced by: dprdfid 19939 snifpsrbag 21816 evlsbagval 41695 mhpind 41723 cantnfresb 42650 mnringmulrcld 43563 |
Copyright terms: Public domain | W3C validator |