Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sniffsupp | Structured version Visualization version GIF version |
Description: A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019.) |
Ref | Expression |
---|---|
sniffsupp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
sniffsupp.0 | ⊢ (𝜑 → 0 ∈ 𝑊) |
sniffsupp.f | ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) |
Ref | Expression |
---|---|
sniffsupp | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sniffsupp.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) | |
2 | snfi 8909 | . . . 4 ⊢ {𝑋} ∈ Fin | |
3 | eldifsni 4737 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐼 ∖ {𝑋}) → 𝑥 ≠ 𝑋) | |
4 | 3 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑋})) → 𝑥 ≠ 𝑋) |
5 | 4 | neneqd 2945 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑋})) → ¬ 𝑥 = 𝑋) |
6 | 5 | iffalsed 4484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑋})) → if(𝑥 = 𝑋, 𝐴, 0 ) = 0 ) |
7 | sniffsupp.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
8 | 6, 7 | suppss2 8086 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) |
9 | ssfi 9038 | . . . 4 ⊢ (({𝑋} ∈ Fin ∧ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin) | |
10 | 2, 8, 9 | sylancr 587 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin) |
11 | funmpt 6522 | . . . 4 ⊢ Fun (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) | |
12 | 7 | mptexd 7156 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ V) |
13 | sniffsupp.0 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑊) | |
14 | funisfsupp 9231 | . . . 4 ⊢ ((Fun (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∧ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ V ∧ 0 ∈ 𝑊) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin)) | |
15 | 11, 12, 13, 14 | mp3an2i 1465 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin)) |
16 | 10, 15 | mpbird 256 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ) |
17 | 1, 16 | eqbrtrid 5127 | 1 ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 Vcvv 3441 ∖ cdif 3895 ⊆ wss 3898 ifcif 4473 {csn 4573 class class class wbr 5092 ↦ cmpt 5175 Fun wfun 6473 (class class class)co 7337 supp csupp 8047 Fincfn 8804 finSupp cfsupp 9226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-supp 8048 df-1o 8367 df-en 8805 df-fin 8808 df-fsupp 9227 |
This theorem is referenced by: dprdfid 19715 snifpsrbag 21231 evlsbagval 40535 mhpind 40543 mnringmulrcld 42167 |
Copyright terms: Public domain | W3C validator |