| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sniffsupp | Structured version Visualization version GIF version | ||
| Description: A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019.) |
| Ref | Expression |
|---|---|
| sniffsupp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| sniffsupp.0 | ⊢ (𝜑 → 0 ∈ 𝑊) |
| sniffsupp.f | ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) |
| Ref | Expression |
|---|---|
| sniffsupp | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sniffsupp.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) | |
| 2 | snfi 8974 | . . . 4 ⊢ {𝑋} ∈ Fin | |
| 3 | eldifsni 4743 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐼 ∖ {𝑋}) → 𝑥 ≠ 𝑋) | |
| 4 | 3 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑋})) → 𝑥 ≠ 𝑋) |
| 5 | 4 | neneqd 2934 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑋})) → ¬ 𝑥 = 𝑋) |
| 6 | 5 | iffalsed 4487 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ {𝑋})) → if(𝑥 = 𝑋, 𝐴, 0 ) = 0 ) |
| 7 | sniffsupp.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 8 | 6, 7 | suppss2 8138 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) |
| 9 | ssfi 9091 | . . . 4 ⊢ (({𝑋} ∈ Fin ∧ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ⊆ {𝑋}) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin) | |
| 10 | 2, 8, 9 | sylancr 587 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin) |
| 11 | funmpt 6526 | . . . 4 ⊢ Fun (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) | |
| 12 | 7 | mptexd 7166 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ V) |
| 13 | sniffsupp.0 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑊) | |
| 14 | funisfsupp 9260 | . . . 4 ⊢ ((Fun (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∧ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ V ∧ 0 ∈ 𝑊) → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin)) | |
| 15 | 11, 12, 13, 14 | mp3an2i 1468 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) supp 0 ) ∈ Fin)) |
| 16 | 10, 15 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) finSupp 0 ) |
| 17 | 1, 16 | eqbrtrid 5130 | 1 ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 ifcif 4476 {csn 4577 class class class wbr 5095 ↦ cmpt 5176 Fun wfun 6482 (class class class)co 7354 supp csupp 8098 Fincfn 8877 finSupp cfsupp 9254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-supp 8099 df-1o 8393 df-en 8878 df-fin 8881 df-fsupp 9255 |
| This theorem is referenced by: dprdfid 19935 snifpsrbag 21861 evlsbagval 42687 mhpind 42715 cantnfresb 43444 mnringmulrcld 44348 |
| Copyright terms: Public domain | W3C validator |