Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fidmfisupp Structured version   Visualization version   GIF version

Theorem fidmfisupp 40196
 Description: A function with a finite domain is finitely supported. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
fidmfisupp.1 (𝜑𝐹:𝐷𝑅)
fidmfisupp.2 (𝜑𝐷 ∈ Fin)
fidmfisupp.3 (𝜑𝑍𝑉)
Assertion
Ref Expression
fidmfisupp (𝜑𝐹 finSupp 𝑍)

Proof of Theorem fidmfisupp
StepHypRef Expression
1 fidmfisupp.1 . . . . 5 (𝜑𝐹:𝐷𝑅)
2 fidmfisupp.2 . . . . 5 (𝜑𝐷 ∈ Fin)
3 fex 6744 . . . . 5 ((𝐹:𝐷𝑅𝐷 ∈ Fin) → 𝐹 ∈ V)
41, 2, 3syl2anc 581 . . . 4 (𝜑𝐹 ∈ V)
5 fidmfisupp.3 . . . 4 (𝜑𝑍𝑉)
6 suppimacnv 7569 . . . 4 ((𝐹 ∈ V ∧ 𝑍𝑉) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
74, 5, 6syl2anc 581 . . 3 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
82, 1fisuppfi 8551 . . 3 (𝜑 → (𝐹 “ (V ∖ {𝑍})) ∈ Fin)
97, 8eqeltrd 2905 . 2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
101ffund 6281 . . 3 (𝜑 → Fun 𝐹)
11 funisfsupp 8548 . . 3 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍𝑉) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
1210, 4, 5, 11syl3anc 1496 . 2 (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
139, 12mpbird 249 1 (𝜑𝐹 finSupp 𝑍)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   = wceq 1658   ∈ wcel 2166  Vcvv 3413   ∖ cdif 3794  {csn 4396   class class class wbr 4872  ◡ccnv 5340   “ cima 5344  Fun wfun 6116  ⟶wf 6118  (class class class)co 6904   supp csupp 7558  Fincfn 8221   finSupp cfsupp 8543 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-supp 7559  df-er 8008  df-en 8222  df-fin 8225  df-fsupp 8544 This theorem is referenced by:  rrxtopnfi  41297
 Copyright terms: Public domain W3C validator