![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fidmfisupp | Structured version Visualization version GIF version |
Description: A function with a finite domain is finitely supported. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
fidmfisupp.1 | ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) |
fidmfisupp.2 | ⊢ (𝜑 → 𝐷 ∈ Fin) |
fidmfisupp.3 | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
fidmfisupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fidmfisupp.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) | |
2 | fidmfisupp.2 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Fin) | |
3 | fex 6744 | . . . . 5 ⊢ ((𝐹:𝐷⟶𝑅 ∧ 𝐷 ∈ Fin) → 𝐹 ∈ V) | |
4 | 1, 2, 3 | syl2anc 581 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
5 | fidmfisupp.3 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
6 | suppimacnv 7569 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
7 | 4, 5, 6 | syl2anc 581 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
8 | 2, 1 | fisuppfi 8551 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) |
9 | 7, 8 | eqeltrd 2905 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
10 | 1 | ffund 6281 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
11 | funisfsupp 8548 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) | |
12 | 10, 4, 5, 11 | syl3anc 1496 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) |
13 | 9, 12 | mpbird 249 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1658 ∈ wcel 2166 Vcvv 3413 ∖ cdif 3794 {csn 4396 class class class wbr 4872 ◡ccnv 5340 “ cima 5344 Fun wfun 6116 ⟶wf 6118 (class class class)co 6904 supp csupp 7558 Fincfn 8221 finSupp cfsupp 8543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-reu 3123 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-supp 7559 df-er 8008 df-en 8222 df-fin 8225 df-fsupp 8544 |
This theorem is referenced by: rrxtopnfi 41297 |
Copyright terms: Public domain | W3C validator |