![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fidmfisupp | Structured version Visualization version GIF version |
Description: A function with a finite domain is finitely supported. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
fidmfisupp.1 | ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) |
fidmfisupp.2 | ⊢ (𝜑 → 𝐷 ∈ Fin) |
fidmfisupp.3 | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
Ref | Expression |
---|---|
fidmfisupp | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fidmfisupp.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶𝑅) | |
2 | fidmfisupp.2 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ Fin) | |
3 | 1, 2 | fexd 7229 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
4 | fidmfisupp.3 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
5 | suppimacnv 8159 | . . . 4 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
6 | 3, 4, 5 | syl2anc 585 | . . 3 ⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
7 | 2, 1 | fisuppfi 9370 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ {𝑍})) ∈ Fin) |
8 | 6, 7 | eqeltrd 2834 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
9 | 1 | ffund 6722 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
10 | funisfsupp 9367 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) | |
11 | 9, 3, 4, 10 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) |
12 | 8, 11 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∖ cdif 3946 {csn 4629 class class class wbr 5149 ◡ccnv 5676 “ cima 5680 Fun wfun 6538 ⟶wf 6540 (class class class)co 7409 supp csupp 8146 Fincfn 8939 finSupp cfsupp 9361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-supp 8147 df-1o 8466 df-en 8940 df-fin 8943 df-fsupp 9362 |
This theorem is referenced by: mptiffisupp 31915 rrxtopnfi 45003 |
Copyright terms: Public domain | W3C validator |