MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcdmnn0fsuppg Structured version   Visualization version   GIF version

Theorem fcdmnn0fsuppg 12564
Description: Version of fcdmnn0fsupp 12562 avoiding ax-rep 5286 by assuming 𝐹 is a set rather than its domain 𝐼. (Contributed by SN, 5-Aug-2024.)
Assertion
Ref Expression
fcdmnn0fsuppg ((𝐹𝑉𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (𝐹 “ ℕ) ∈ Fin))

Proof of Theorem fcdmnn0fsuppg
StepHypRef Expression
1 ffun 6726 . . 3 (𝐹:𝐼⟶ℕ0 → Fun 𝐹)
2 simpl 481 . . 3 ((𝐹𝑉𝐹:𝐼⟶ℕ0) → 𝐹𝑉)
3 c0ex 11240 . . . 4 0 ∈ V
4 funisfsupp 9393 . . . 4 ((Fun 𝐹𝐹𝑉 ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (𝐹 supp 0) ∈ Fin))
53, 4mp3an3 1446 . . 3 ((Fun 𝐹𝐹𝑉) → (𝐹 finSupp 0 ↔ (𝐹 supp 0) ∈ Fin))
61, 2, 5syl2an2 684 . 2 ((𝐹𝑉𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (𝐹 supp 0) ∈ Fin))
7 fcdmnn0suppg 12563 . . 3 ((𝐹𝑉𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
87eleq1d 2810 . 2 ((𝐹𝑉𝐹:𝐼⟶ℕ0) → ((𝐹 supp 0) ∈ Fin ↔ (𝐹 “ ℕ) ∈ Fin))
96, 8bitrd 278 1 ((𝐹𝑉𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (𝐹 “ ℕ) ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2098  Vcvv 3461   class class class wbr 5149  ccnv 5677  cima 5681  Fun wfun 6543  wf 6545  (class class class)co 7419   supp csupp 8165  Fincfn 8964   finSupp cfsupp 9387  0cc0 11140  cn 12245  0cn0 12505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fsupp 9388  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-nn 12246  df-n0 12506
This theorem is referenced by:  psrbagfsupp  21870  psrbagres  41914  evlselvlem  41954  evlselv  41955
  Copyright terms: Public domain W3C validator