HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimf Structured version   Visualization version   GIF version

Theorem hlimf 31257
Description: Function-like behavior of the convergence relation. (Contributed by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hlimf 𝑣 :dom ⇝𝑣 ⟶ ℋ

Proof of Theorem hlimf
StepHypRef Expression
1 eqid 2736 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2 eqid 2736 . . . . . . 7 (IndMet‘⟨⟨ + , · ⟩, norm⟩) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
31, 2hhxmet 31195 . . . . . 6 (IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ)
4 eqid 2736 . . . . . . 7 (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) = (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
54methaus 24534 . . . . . 6 ((IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∈ Haus)
6 lmfun 23390 . . . . . 6 ((MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∈ Haus → Fun (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
73, 5, 6mp2b 10 . . . . 5 Fun (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
8 funres 6607 . . . . 5 (Fun (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) → Fun ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ)))
97, 8ax-mp 5 . . . 4 Fun ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ))
101, 2, 4hhlm 31219 . . . . 5 𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ))
1110funeqi 6586 . . . 4 (Fun ⇝𝑣 ↔ Fun ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ)))
129, 11mpbir 231 . . 3 Fun ⇝𝑣
13 funfn 6595 . . 3 (Fun ⇝𝑣 ↔ ⇝𝑣 Fn dom ⇝𝑣 )
1412, 13mpbi 230 . 2 𝑣 Fn dom ⇝𝑣
15 funfvbrb 7070 . . . . 5 (Fun ⇝𝑣 → (𝑥 ∈ dom ⇝𝑣𝑥𝑣 ( ⇝𝑣𝑥)))
1612, 15ax-mp 5 . . . 4 (𝑥 ∈ dom ⇝𝑣𝑥𝑣 ( ⇝𝑣𝑥))
17 fvex 6918 . . . . 5 ( ⇝𝑣𝑥) ∈ V
1817hlimveci 31210 . . . 4 (𝑥𝑣 ( ⇝𝑣𝑥) → ( ⇝𝑣𝑥) ∈ ℋ)
1916, 18sylbi 217 . . 3 (𝑥 ∈ dom ⇝𝑣 → ( ⇝𝑣𝑥) ∈ ℋ)
2019rgen 3062 . 2 𝑥 ∈ dom ⇝𝑣 ( ⇝𝑣𝑥) ∈ ℋ
21 ffnfv 7138 . 2 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ ↔ ( ⇝𝑣 Fn dom ⇝𝑣 ∧ ∀𝑥 ∈ dom ⇝𝑣 ( ⇝𝑣𝑥) ∈ ℋ))
2214, 20, 21mpbir2an 711 1 𝑣 :dom ⇝𝑣 ⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2107  wral 3060  cop 4631   class class class wbr 5142  dom cdm 5684  cres 5686  Fun wfun 6554   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  m cmap 8867  cn 12267  ∞Metcxmet 21350  MetOpencmopn 21355  𝑡clm 23235  Hauscha 23317  IndMetcims 30611  chba 30939   + cva 30940   · csm 30941  normcno 30943  𝑣 chli 30947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236  ax-hilex 31019  ax-hfvadd 31020  ax-hvcom 31021  ax-hvass 31022  ax-hv0cl 31023  ax-hvaddid 31024  ax-hfvmul 31025  ax-hvmulid 31026  ax-hvmulass 31027  ax-hvdistr1 31028  ax-hvdistr2 31029  ax-hvmul0 31030  ax-hfi 31099  ax-his1 31102  ax-his2 31103  ax-his3 31104  ax-his4 31105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-icc 13395  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-topgen 17489  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-top 22901  df-topon 22918  df-bases 22954  df-lm 23238  df-haus 23324  df-grpo 30513  df-gid 30514  df-ginv 30515  df-gdiv 30516  df-ablo 30565  df-vc 30579  df-nv 30612  df-va 30615  df-ba 30616  df-sm 30617  df-0v 30618  df-vs 30619  df-nmcv 30620  df-ims 30621  df-hnorm 30988  df-hvsub 30991  df-hlim 30992
This theorem is referenced by:  hlimuni  31258  hhsscms  31298  occllem  31323  occl  31324  chscllem2  31658  chscllem4  31660
  Copyright terms: Public domain W3C validator