| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hlimf | Structured version Visualization version GIF version | ||
| Description: Function-like behavior of the convergence relation. (Contributed by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlimf | ⊢ ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . . . 7 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 2 | eqid 2733 | . . . . . . 7 ⊢ (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 3 | 1, 2 | hhxmet 31159 | . . . . . 6 ⊢ (IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∈ (∞Met‘ ℋ) |
| 4 | eqid 2733 | . . . . . . 7 ⊢ (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) = (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) | |
| 5 | 4 | methaus 24438 | . . . . . 6 ⊢ ((IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∈ Haus) |
| 6 | lmfun 23299 | . . . . . 6 ⊢ ((MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) ∈ Haus → Fun (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)))) | |
| 7 | 3, 5, 6 | mp2b 10 | . . . . 5 ⊢ Fun (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) |
| 8 | funres 6530 | . . . . 5 ⊢ (Fun (⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) → Fun ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ))) | |
| 9 | 7, 8 | ax-mp 5 | . . . 4 ⊢ Fun ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) |
| 10 | 1, 2, 4 | hhlm 31183 | . . . . 5 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ)) |
| 11 | 10 | funeqi 6509 | . . . 4 ⊢ (Fun ⇝𝑣 ↔ Fun ((⇝𝑡‘(MetOpen‘(IndMet‘〈〈 +ℎ , ·ℎ 〉, normℎ〉))) ↾ ( ℋ ↑m ℕ))) |
| 12 | 9, 11 | mpbir 231 | . . 3 ⊢ Fun ⇝𝑣 |
| 13 | funfn 6518 | . . 3 ⊢ (Fun ⇝𝑣 ↔ ⇝𝑣 Fn dom ⇝𝑣 ) | |
| 14 | 12, 13 | mpbi 230 | . 2 ⊢ ⇝𝑣 Fn dom ⇝𝑣 |
| 15 | funfvbrb 6992 | . . . . 5 ⊢ (Fun ⇝𝑣 → (𝑥 ∈ dom ⇝𝑣 ↔ 𝑥 ⇝𝑣 ( ⇝𝑣 ‘𝑥))) | |
| 16 | 12, 15 | ax-mp 5 | . . . 4 ⊢ (𝑥 ∈ dom ⇝𝑣 ↔ 𝑥 ⇝𝑣 ( ⇝𝑣 ‘𝑥)) |
| 17 | fvex 6843 | . . . . 5 ⊢ ( ⇝𝑣 ‘𝑥) ∈ V | |
| 18 | 17 | hlimveci 31174 | . . . 4 ⊢ (𝑥 ⇝𝑣 ( ⇝𝑣 ‘𝑥) → ( ⇝𝑣 ‘𝑥) ∈ ℋ) |
| 19 | 16, 18 | sylbi 217 | . . 3 ⊢ (𝑥 ∈ dom ⇝𝑣 → ( ⇝𝑣 ‘𝑥) ∈ ℋ) |
| 20 | 19 | rgen 3050 | . 2 ⊢ ∀𝑥 ∈ dom ⇝𝑣 ( ⇝𝑣 ‘𝑥) ∈ ℋ |
| 21 | ffnfv 7060 | . 2 ⊢ ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ ↔ ( ⇝𝑣 Fn dom ⇝𝑣 ∧ ∀𝑥 ∈ dom ⇝𝑣 ( ⇝𝑣 ‘𝑥) ∈ ℋ)) | |
| 22 | 14, 20, 21 | mpbir2an 711 | 1 ⊢ ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 ∀wral 3048 〈cop 4583 class class class wbr 5095 dom cdm 5621 ↾ cres 5623 Fun wfun 6482 Fn wfn 6483 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ↑m cmap 8758 ℕcn 12134 ∞Metcxmet 21280 MetOpencmopn 21285 ⇝𝑡clm 23144 Hauscha 23226 IndMetcims 30575 ℋchba 30903 +ℎ cva 30904 ·ℎ csm 30905 normℎcno 30907 ⇝𝑣 chli 30911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 ax-addf 11094 ax-mulf 11095 ax-hilex 30983 ax-hfvadd 30984 ax-hvcom 30985 ax-hvass 30986 ax-hv0cl 30987 ax-hvaddid 30988 ax-hfvmul 30989 ax-hvmulid 30990 ax-hvmulass 30991 ax-hvdistr1 30992 ax-hvdistr2 30993 ax-hvmul0 30994 ax-hfi 31063 ax-his1 31066 ax-his2 31067 ax-his3 31068 ax-his4 31069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-n0 12391 df-z 12478 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-icc 13256 df-seq 13913 df-exp 13973 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-topgen 17351 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-top 22812 df-topon 22829 df-bases 22864 df-lm 23147 df-haus 23233 df-grpo 30477 df-gid 30478 df-ginv 30479 df-gdiv 30480 df-ablo 30529 df-vc 30543 df-nv 30576 df-va 30579 df-ba 30580 df-sm 30581 df-0v 30582 df-vs 30583 df-nmcv 30584 df-ims 30585 df-hnorm 30952 df-hvsub 30955 df-hlim 30956 |
| This theorem is referenced by: hlimuni 31222 hhsscms 31262 occllem 31287 occl 31288 chscllem2 31622 chscllem4 31624 |
| Copyright terms: Public domain | W3C validator |