![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hlimf | Structured version Visualization version GIF version |
Description: Function-like behavior of the convergence relation. (Contributed by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlimf | β’ βπ£ :dom βπ£ βΆ β |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . . . . 7 β’ β¨β¨ +β , Β·β β©, normββ© = β¨β¨ +β , Β·β β©, normββ© | |
2 | eqid 2724 | . . . . . . 7 β’ (IndMetββ¨β¨ +β , Β·β β©, normββ©) = (IndMetββ¨β¨ +β , Β·β β©, normββ©) | |
3 | 1, 2 | hhxmet 30900 | . . . . . 6 β’ (IndMetββ¨β¨ +β , Β·β β©, normββ©) β (βMetβ β) |
4 | eqid 2724 | . . . . . . 7 β’ (MetOpenβ(IndMetββ¨β¨ +β , Β·β β©, normββ©)) = (MetOpenβ(IndMetββ¨β¨ +β , Β·β β©, normββ©)) | |
5 | 4 | methaus 24353 | . . . . . 6 β’ ((IndMetββ¨β¨ +β , Β·β β©, normββ©) β (βMetβ β) β (MetOpenβ(IndMetββ¨β¨ +β , Β·β β©, normββ©)) β Haus) |
6 | lmfun 23209 | . . . . . 6 β’ ((MetOpenβ(IndMetββ¨β¨ +β , Β·β β©, normββ©)) β Haus β Fun (βπ‘β(MetOpenβ(IndMetββ¨β¨ +β , Β·β β©, normββ©)))) | |
7 | 3, 5, 6 | mp2b 10 | . . . . 5 β’ Fun (βπ‘β(MetOpenβ(IndMetββ¨β¨ +β , Β·β β©, normββ©))) |
8 | funres 6581 | . . . . 5 β’ (Fun (βπ‘β(MetOpenβ(IndMetββ¨β¨ +β , Β·β β©, normββ©))) β Fun ((βπ‘β(MetOpenβ(IndMetββ¨β¨ +β , Β·β β©, normββ©))) βΎ ( β βm β))) | |
9 | 7, 8 | ax-mp 5 | . . . 4 β’ Fun ((βπ‘β(MetOpenβ(IndMetββ¨β¨ +β , Β·β β©, normββ©))) βΎ ( β βm β)) |
10 | 1, 2, 4 | hhlm 30924 | . . . . 5 β’ βπ£ = ((βπ‘β(MetOpenβ(IndMetββ¨β¨ +β , Β·β β©, normββ©))) βΎ ( β βm β)) |
11 | 10 | funeqi 6560 | . . . 4 β’ (Fun βπ£ β Fun ((βπ‘β(MetOpenβ(IndMetββ¨β¨ +β , Β·β β©, normββ©))) βΎ ( β βm β))) |
12 | 9, 11 | mpbir 230 | . . 3 β’ Fun βπ£ |
13 | funfn 6569 | . . 3 β’ (Fun βπ£ β βπ£ Fn dom βπ£ ) | |
14 | 12, 13 | mpbi 229 | . 2 β’ βπ£ Fn dom βπ£ |
15 | funfvbrb 7043 | . . . . 5 β’ (Fun βπ£ β (π₯ β dom βπ£ β π₯ βπ£ ( βπ£ βπ₯))) | |
16 | 12, 15 | ax-mp 5 | . . . 4 β’ (π₯ β dom βπ£ β π₯ βπ£ ( βπ£ βπ₯)) |
17 | fvex 6895 | . . . . 5 β’ ( βπ£ βπ₯) β V | |
18 | 17 | hlimveci 30915 | . . . 4 β’ (π₯ βπ£ ( βπ£ βπ₯) β ( βπ£ βπ₯) β β) |
19 | 16, 18 | sylbi 216 | . . 3 β’ (π₯ β dom βπ£ β ( βπ£ βπ₯) β β) |
20 | 19 | rgen 3055 | . 2 β’ βπ₯ β dom βπ£ ( βπ£ βπ₯) β β |
21 | ffnfv 7111 | . 2 β’ ( βπ£ :dom βπ£ βΆ β β ( βπ£ Fn dom βπ£ β§ βπ₯ β dom βπ£ ( βπ£ βπ₯) β β)) | |
22 | 14, 20, 21 | mpbir2an 708 | 1 β’ βπ£ :dom βπ£ βΆ β |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β wcel 2098 βwral 3053 β¨cop 4627 class class class wbr 5139 dom cdm 5667 βΎ cres 5669 Fun wfun 6528 Fn wfn 6529 βΆwf 6530 βcfv 6534 (class class class)co 7402 βm cmap 8817 βcn 12210 βMetcxmet 21215 MetOpencmopn 21220 βπ‘clm 23054 Hauscha 23136 IndMetcims 30316 βchba 30644 +β cva 30645 Β·β csm 30646 normβcno 30648 βπ£ chli 30652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-addf 11186 ax-mulf 11187 ax-hilex 30724 ax-hfvadd 30725 ax-hvcom 30726 ax-hvass 30727 ax-hv0cl 30728 ax-hvaddid 30729 ax-hfvmul 30730 ax-hvmulid 30731 ax-hvmulass 30732 ax-hvdistr1 30733 ax-hvdistr2 30734 ax-hvmul0 30735 ax-hfi 30804 ax-his1 30807 ax-his2 30808 ax-his3 30809 ax-his4 30810 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-map 8819 df-pm 8820 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-inf 9435 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-n0 12471 df-z 12557 df-uz 12821 df-q 12931 df-rp 12973 df-xneg 13090 df-xadd 13091 df-xmul 13092 df-icc 13329 df-seq 13965 df-exp 14026 df-cj 15044 df-re 15045 df-im 15046 df-sqrt 15180 df-abs 15181 df-topgen 17390 df-psmet 21222 df-xmet 21223 df-met 21224 df-bl 21225 df-mopn 21226 df-top 22720 df-topon 22737 df-bases 22773 df-lm 23057 df-haus 23143 df-grpo 30218 df-gid 30219 df-ginv 30220 df-gdiv 30221 df-ablo 30270 df-vc 30284 df-nv 30317 df-va 30320 df-ba 30321 df-sm 30322 df-0v 30323 df-vs 30324 df-nmcv 30325 df-ims 30326 df-hnorm 30693 df-hvsub 30696 df-hlim 30697 |
This theorem is referenced by: hlimuni 30963 hhsscms 31003 occllem 31028 occl 31029 chscllem2 31363 chscllem4 31365 |
Copyright terms: Public domain | W3C validator |