HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimf Structured version   Visualization version   GIF version

Theorem hlimf 31199
Description: Function-like behavior of the convergence relation. (Contributed by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hlimf 𝑣 :dom ⇝𝑣 ⟶ ℋ

Proof of Theorem hlimf
StepHypRef Expression
1 eqid 2729 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
2 eqid 2729 . . . . . . 7 (IndMet‘⟨⟨ + , · ⟩, norm⟩) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
31, 2hhxmet 31137 . . . . . 6 (IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ)
4 eqid 2729 . . . . . . 7 (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) = (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))
54methaus 24424 . . . . . 6 ((IndMet‘⟨⟨ + , · ⟩, norm⟩) ∈ (∞Met‘ ℋ) → (MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∈ Haus)
6 lmfun 23284 . . . . . 6 ((MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)) ∈ Haus → Fun (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))))
73, 5, 6mp2b 10 . . . . 5 Fun (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩)))
8 funres 6528 . . . . 5 (Fun (⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) → Fun ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ)))
97, 8ax-mp 5 . . . 4 Fun ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ))
101, 2, 4hhlm 31161 . . . . 5 𝑣 = ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ))
1110funeqi 6507 . . . 4 (Fun ⇝𝑣 ↔ Fun ((⇝𝑡‘(MetOpen‘(IndMet‘⟨⟨ + , · ⟩, norm⟩))) ↾ ( ℋ ↑m ℕ)))
129, 11mpbir 231 . . 3 Fun ⇝𝑣
13 funfn 6516 . . 3 (Fun ⇝𝑣 ↔ ⇝𝑣 Fn dom ⇝𝑣 )
1412, 13mpbi 230 . 2 𝑣 Fn dom ⇝𝑣
15 funfvbrb 6989 . . . . 5 (Fun ⇝𝑣 → (𝑥 ∈ dom ⇝𝑣𝑥𝑣 ( ⇝𝑣𝑥)))
1612, 15ax-mp 5 . . . 4 (𝑥 ∈ dom ⇝𝑣𝑥𝑣 ( ⇝𝑣𝑥))
17 fvex 6839 . . . . 5 ( ⇝𝑣𝑥) ∈ V
1817hlimveci 31152 . . . 4 (𝑥𝑣 ( ⇝𝑣𝑥) → ( ⇝𝑣𝑥) ∈ ℋ)
1916, 18sylbi 217 . . 3 (𝑥 ∈ dom ⇝𝑣 → ( ⇝𝑣𝑥) ∈ ℋ)
2019rgen 3046 . 2 𝑥 ∈ dom ⇝𝑣 ( ⇝𝑣𝑥) ∈ ℋ
21 ffnfv 7057 . 2 ( ⇝𝑣 :dom ⇝𝑣 ⟶ ℋ ↔ ( ⇝𝑣 Fn dom ⇝𝑣 ∧ ∀𝑥 ∈ dom ⇝𝑣 ( ⇝𝑣𝑥) ∈ ℋ))
2214, 20, 21mpbir2an 711 1 𝑣 :dom ⇝𝑣 ⟶ ℋ
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  wral 3044  cop 4585   class class class wbr 5095  dom cdm 5623  cres 5625  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  cn 12146  ∞Metcxmet 21264  MetOpencmopn 21269  𝑡clm 23129  Hauscha 23211  IndMetcims 30553  chba 30881   + cva 30882   · csm 30883  normcno 30885  𝑣 chli 30889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108  ax-hilex 30961  ax-hfvadd 30962  ax-hvcom 30963  ax-hvass 30964  ax-hv0cl 30965  ax-hvaddid 30966  ax-hfvmul 30967  ax-hvmulid 30968  ax-hvmulass 30969  ax-hvdistr1 30970  ax-hvdistr2 30971  ax-hvmul0 30972  ax-hfi 31041  ax-his1 31044  ax-his2 31045  ax-his3 31046  ax-his4 31047
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-icc 13273  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-lm 23132  df-haus 23218  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ims 30563  df-hnorm 30930  df-hvsub 30933  df-hlim 30934
This theorem is referenced by:  hlimuni  31200  hhsscms  31240  occllem  31265  occl  31266  chscllem2  31600  chscllem4  31602
  Copyright terms: Public domain W3C validator