![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmgcl | Structured version Visualization version GIF version |
Description: Cyclic permutations are permutations, similar to cycpmcl 33109, but where the set of cyclic permutations of length 𝑃 is expressed in terms of a preimage. (Contributed by Thierry Arnoux, 13-Oct-2023.) |
Ref | Expression |
---|---|
cycpmconjs.c | ⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) |
cycpmconjs.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
cycpmconjs.n | ⊢ 𝑁 = (♯‘𝐷) |
cycpmconjs.m | ⊢ 𝑀 = (toCyc‘𝐷) |
cycpmgcl.b | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
cycpmgcl | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) = 𝑝) | |
2 | cycpmconjs.m | . . . . . . . 8 ⊢ 𝑀 = (toCyc‘𝐷) | |
3 | simplll 774 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝐷 ∈ 𝑉) | |
4 | simpr 484 | . . . . . . . . . 10 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) | |
5 | 4 | elin1d 4227 | . . . . . . . . 9 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
6 | elrabi 3703 | . . . . . . . . 9 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢 ∈ Word 𝐷) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ Word 𝐷) |
8 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → 𝑤 = 𝑢) | |
9 | dmeq 5928 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢) | |
10 | eqidd 2741 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → 𝐷 = 𝐷) | |
11 | 8, 9, 10 | f1eq123d 6854 | . . . . . . . . . . 11 ⊢ (𝑤 = 𝑢 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑢:dom 𝑢–1-1→𝐷)) |
12 | 11 | elrab 3708 | . . . . . . . . . 10 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ (𝑢 ∈ Word 𝐷 ∧ 𝑢:dom 𝑢–1-1→𝐷)) |
13 | 12 | simprbi 496 | . . . . . . . . 9 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢:dom 𝑢–1-1→𝐷) |
14 | 5, 13 | syl 17 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢:dom 𝑢–1-1→𝐷) |
15 | cycpmconjs.s | . . . . . . . 8 ⊢ 𝑆 = (SymGrp‘𝐷) | |
16 | 2, 3, 7, 14, 15 | cycpmcl 33109 | . . . . . . 7 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → (𝑀‘𝑢) ∈ (Base‘𝑆)) |
17 | 16 | adantr 480 | . . . . . 6 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) ∈ (Base‘𝑆)) |
18 | cycpmgcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
19 | 17, 18 | eleqtrrdi 2855 | . . . . 5 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) ∈ 𝐵) |
20 | 1, 19 | eqeltrrd 2845 | . . . 4 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → 𝑝 ∈ 𝐵) |
21 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑢𝑀 | |
22 | simpl 482 | . . . . . . 7 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐷 ∈ 𝑉) | |
23 | 2, 15, 18 | tocycf 33110 | . . . . . . 7 ⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵) |
24 | ffn 6747 | . . . . . . 7 ⊢ (𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵 → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) | |
25 | 22, 23, 24 | 3syl 18 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
26 | 25 | adantr 480 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
27 | cycpmconjs.c | . . . . . . . 8 ⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) | |
28 | 27 | eleq2i 2836 | . . . . . . 7 ⊢ (𝑝 ∈ 𝐶 ↔ 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃}))) |
29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → (𝑝 ∈ 𝐶 ↔ 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃})))) |
30 | 29 | biimpa 476 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃}))) |
31 | 21, 26, 30 | fvelimad 6989 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))(𝑀‘𝑢) = 𝑝) |
32 | 20, 31 | r19.29a 3168 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑝 ∈ 𝐵) |
33 | 32 | ex 412 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → (𝑝 ∈ 𝐶 → 𝑝 ∈ 𝐵)) |
34 | 33 | ssrdv 4014 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐶 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ∩ cin 3975 ⊆ wss 3976 {csn 4648 ◡ccnv 5699 dom cdm 5700 “ cima 5703 Fn wfn 6568 ⟶wf 6569 –1-1→wf1 6570 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ...cfz 13567 ♯chash 14379 Word cword 14562 Basecbs 17258 SymGrpcsymg 19410 toCycctocyc 33099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-hash 14380 df-word 14563 df-concat 14619 df-substr 14689 df-pfx 14719 df-csh 14837 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-tset 17330 df-efmnd 18904 df-symg 19411 df-tocyc 33100 |
This theorem is referenced by: cycpmconjslem2 33148 cycpmconjs 33149 cyc3conja 33150 |
Copyright terms: Public domain | W3C validator |