Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmgcl | Structured version Visualization version GIF version |
Description: Cyclic permutations are permutations, similar to cycpmcl 30902, but where the set of cyclic permutations of length 𝑃 is expressed in terms of a preimage. (Contributed by Thierry Arnoux, 13-Oct-2023.) |
Ref | Expression |
---|---|
cycpmconjs.c | ⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) |
cycpmconjs.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
cycpmconjs.n | ⊢ 𝑁 = (♯‘𝐷) |
cycpmconjs.m | ⊢ 𝑀 = (toCyc‘𝐷) |
cycpmgcl.b | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
cycpmgcl | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 489 | . . . . 5 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) = 𝑝) | |
2 | cycpmconjs.m | . . . . . . . 8 ⊢ 𝑀 = (toCyc‘𝐷) | |
3 | simplll 775 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝐷 ∈ 𝑉) | |
4 | simpr 489 | . . . . . . . . . 10 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) | |
5 | 4 | elin1d 4104 | . . . . . . . . 9 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
6 | elrabi 3597 | . . . . . . . . 9 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢 ∈ Word 𝐷) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ Word 𝐷) |
8 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → 𝑤 = 𝑢) | |
9 | dmeq 5744 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢) | |
10 | eqidd 2760 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → 𝐷 = 𝐷) | |
11 | 8, 9, 10 | f1eq123d 6595 | . . . . . . . . . . 11 ⊢ (𝑤 = 𝑢 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑢:dom 𝑢–1-1→𝐷)) |
12 | 11 | elrab 3603 | . . . . . . . . . 10 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ (𝑢 ∈ Word 𝐷 ∧ 𝑢:dom 𝑢–1-1→𝐷)) |
13 | 12 | simprbi 501 | . . . . . . . . 9 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢:dom 𝑢–1-1→𝐷) |
14 | 5, 13 | syl 17 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢:dom 𝑢–1-1→𝐷) |
15 | cycpmconjs.s | . . . . . . . 8 ⊢ 𝑆 = (SymGrp‘𝐷) | |
16 | 2, 3, 7, 14, 15 | cycpmcl 30902 | . . . . . . 7 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → (𝑀‘𝑢) ∈ (Base‘𝑆)) |
17 | 16 | adantr 485 | . . . . . 6 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) ∈ (Base‘𝑆)) |
18 | cycpmgcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
19 | 17, 18 | eleqtrrdi 2864 | . . . . 5 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) ∈ 𝐵) |
20 | 1, 19 | eqeltrrd 2854 | . . . 4 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → 𝑝 ∈ 𝐵) |
21 | nfcv 2920 | . . . . 5 ⊢ Ⅎ𝑢𝑀 | |
22 | simpl 487 | . . . . . . 7 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐷 ∈ 𝑉) | |
23 | 2, 15, 18 | tocycf 30903 | . . . . . . 7 ⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵) |
24 | ffn 6499 | . . . . . . 7 ⊢ (𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵 → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) | |
25 | 22, 23, 24 | 3syl 18 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
26 | 25 | adantr 485 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
27 | cycpmconjs.c | . . . . . . . 8 ⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) | |
28 | 27 | eleq2i 2844 | . . . . . . 7 ⊢ (𝑝 ∈ 𝐶 ↔ 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃}))) |
29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → (𝑝 ∈ 𝐶 ↔ 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃})))) |
30 | 29 | biimpa 481 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃}))) |
31 | 21, 26, 30 | fvelimad 6721 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))(𝑀‘𝑢) = 𝑝) |
32 | 20, 31 | r19.29a 3214 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑝 ∈ 𝐵) |
33 | 32 | ex 417 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → (𝑝 ∈ 𝐶 → 𝑝 ∈ 𝐵)) |
34 | 33 | ssrdv 3899 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐶 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 {crab 3075 ∩ cin 3858 ⊆ wss 3859 {csn 4523 ◡ccnv 5524 dom cdm 5525 “ cima 5528 Fn wfn 6331 ⟶wf 6332 –1-1→wf1 6333 ‘cfv 6336 (class class class)co 7151 0cc0 10568 ...cfz 12932 ♯chash 13733 Word cword 13906 Basecbs 16534 SymGrpcsymg 18555 toCycctocyc 30892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-pre-sup 10646 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-sup 8932 df-inf 8933 df-card 9394 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-9 11737 df-n0 11928 df-z 12014 df-uz 12276 df-rp 12424 df-fz 12933 df-fzo 13076 df-fl 13204 df-mod 13280 df-hash 13734 df-word 13907 df-concat 13963 df-substr 14043 df-pfx 14073 df-csh 14191 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-tset 16635 df-efmnd 18093 df-symg 18556 df-tocyc 30893 |
This theorem is referenced by: cycpmconjslem2 30941 cycpmconjs 30942 cyc3conja 30943 |
Copyright terms: Public domain | W3C validator |