| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmgcl | Structured version Visualization version GIF version | ||
| Description: Cyclic permutations are permutations, similar to cycpmcl 33073, but where the set of cyclic permutations of length 𝑃 is expressed in terms of a preimage. (Contributed by Thierry Arnoux, 13-Oct-2023.) |
| Ref | Expression |
|---|---|
| cycpmconjs.c | ⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) |
| cycpmconjs.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| cycpmconjs.n | ⊢ 𝑁 = (♯‘𝐷) |
| cycpmconjs.m | ⊢ 𝑀 = (toCyc‘𝐷) |
| cycpmgcl.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| cycpmgcl | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐶 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) = 𝑝) | |
| 2 | cycpmconjs.m | . . . . . . . 8 ⊢ 𝑀 = (toCyc‘𝐷) | |
| 3 | simplll 774 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝐷 ∈ 𝑉) | |
| 4 | simpr 484 | . . . . . . . . . 10 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) | |
| 5 | 4 | elin1d 4167 | . . . . . . . . 9 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 6 | elrabi 3654 | . . . . . . . . 9 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢 ∈ Word 𝐷) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ Word 𝐷) |
| 8 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → 𝑤 = 𝑢) | |
| 9 | dmeq 5867 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢) | |
| 10 | eqidd 2730 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → 𝐷 = 𝐷) | |
| 11 | 8, 9, 10 | f1eq123d 6792 | . . . . . . . . . . 11 ⊢ (𝑤 = 𝑢 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑢:dom 𝑢–1-1→𝐷)) |
| 12 | 11 | elrab 3659 | . . . . . . . . . 10 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ (𝑢 ∈ Word 𝐷 ∧ 𝑢:dom 𝑢–1-1→𝐷)) |
| 13 | 12 | simprbi 496 | . . . . . . . . 9 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢:dom 𝑢–1-1→𝐷) |
| 14 | 5, 13 | syl 17 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢:dom 𝑢–1-1→𝐷) |
| 15 | cycpmconjs.s | . . . . . . . 8 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 16 | 2, 3, 7, 14, 15 | cycpmcl 33073 | . . . . . . 7 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → (𝑀‘𝑢) ∈ (Base‘𝑆)) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) ∈ (Base‘𝑆)) |
| 18 | cycpmgcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 19 | 17, 18 | eleqtrrdi 2839 | . . . . 5 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) ∈ 𝐵) |
| 20 | 1, 19 | eqeltrrd 2829 | . . . 4 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → 𝑝 ∈ 𝐵) |
| 21 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑢𝑀 | |
| 22 | simpl 482 | . . . . . . 7 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐷 ∈ 𝑉) | |
| 23 | 2, 15, 18 | tocycf 33074 | . . . . . . 7 ⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵) |
| 24 | ffn 6688 | . . . . . . 7 ⊢ (𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵 → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) | |
| 25 | 22, 23, 24 | 3syl 18 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 26 | 25 | adantr 480 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 27 | cycpmconjs.c | . . . . . . . 8 ⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) | |
| 28 | 27 | eleq2i 2820 | . . . . . . 7 ⊢ (𝑝 ∈ 𝐶 ↔ 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃}))) |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → (𝑝 ∈ 𝐶 ↔ 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃})))) |
| 30 | 29 | biimpa 476 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃}))) |
| 31 | 21, 26, 30 | fvelimad 6928 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))(𝑀‘𝑢) = 𝑝) |
| 32 | 20, 31 | r19.29a 3141 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑝 ∈ 𝐵) |
| 33 | 32 | ex 412 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → (𝑝 ∈ 𝐶 → 𝑝 ∈ 𝐵)) |
| 34 | 33 | ssrdv 3952 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐶 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 ∩ cin 3913 ⊆ wss 3914 {csn 4589 ◡ccnv 5637 dom cdm 5638 “ cima 5641 Fn wfn 6506 ⟶wf 6507 –1-1→wf1 6508 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ...cfz 13468 ♯chash 14295 Word cword 14478 Basecbs 17179 SymGrpcsymg 19299 toCycctocyc 33063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-hash 14296 df-word 14479 df-concat 14536 df-substr 14606 df-pfx 14636 df-csh 14754 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-tset 17239 df-efmnd 18796 df-symg 19300 df-tocyc 33064 |
| This theorem is referenced by: cycpmconjslem2 33112 cycpmconjs 33113 cyc3conja 33114 |
| Copyright terms: Public domain | W3C validator |