| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmgcl | Structured version Visualization version GIF version | ||
| Description: Cyclic permutations are permutations, similar to cycpmcl 33071, but where the set of cyclic permutations of length 𝑃 is expressed in terms of a preimage. (Contributed by Thierry Arnoux, 13-Oct-2023.) |
| Ref | Expression |
|---|---|
| cycpmconjs.c | ⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) |
| cycpmconjs.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| cycpmconjs.n | ⊢ 𝑁 = (♯‘𝐷) |
| cycpmconjs.m | ⊢ 𝑀 = (toCyc‘𝐷) |
| cycpmgcl.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| cycpmgcl | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐶 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . 5 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) = 𝑝) | |
| 2 | cycpmconjs.m | . . . . . . . 8 ⊢ 𝑀 = (toCyc‘𝐷) | |
| 3 | simplll 774 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝐷 ∈ 𝑉) | |
| 4 | simpr 484 | . . . . . . . . . 10 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) | |
| 5 | 4 | elin1d 4157 | . . . . . . . . 9 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 6 | elrabi 3645 | . . . . . . . . 9 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢 ∈ Word 𝐷) | |
| 7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ Word 𝐷) |
| 8 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → 𝑤 = 𝑢) | |
| 9 | dmeq 5850 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢) | |
| 10 | eqidd 2730 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → 𝐷 = 𝐷) | |
| 11 | 8, 9, 10 | f1eq123d 6760 | . . . . . . . . . . 11 ⊢ (𝑤 = 𝑢 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑢:dom 𝑢–1-1→𝐷)) |
| 12 | 11 | elrab 3650 | . . . . . . . . . 10 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ (𝑢 ∈ Word 𝐷 ∧ 𝑢:dom 𝑢–1-1→𝐷)) |
| 13 | 12 | simprbi 496 | . . . . . . . . 9 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢:dom 𝑢–1-1→𝐷) |
| 14 | 5, 13 | syl 17 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢:dom 𝑢–1-1→𝐷) |
| 15 | cycpmconjs.s | . . . . . . . 8 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 16 | 2, 3, 7, 14, 15 | cycpmcl 33071 | . . . . . . 7 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → (𝑀‘𝑢) ∈ (Base‘𝑆)) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) ∈ (Base‘𝑆)) |
| 18 | cycpmgcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 19 | 17, 18 | eleqtrrdi 2839 | . . . . 5 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) ∈ 𝐵) |
| 20 | 1, 19 | eqeltrrd 2829 | . . . 4 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → 𝑝 ∈ 𝐵) |
| 21 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑢𝑀 | |
| 22 | simpl 482 | . . . . . . 7 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐷 ∈ 𝑉) | |
| 23 | 2, 15, 18 | tocycf 33072 | . . . . . . 7 ⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵) |
| 24 | ffn 6656 | . . . . . . 7 ⊢ (𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵 → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) | |
| 25 | 22, 23, 24 | 3syl 18 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 26 | 25 | adantr 480 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
| 27 | cycpmconjs.c | . . . . . . . 8 ⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) | |
| 28 | 27 | eleq2i 2820 | . . . . . . 7 ⊢ (𝑝 ∈ 𝐶 ↔ 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃}))) |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → (𝑝 ∈ 𝐶 ↔ 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃})))) |
| 30 | 29 | biimpa 476 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃}))) |
| 31 | 21, 26, 30 | fvelimad 6894 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))(𝑀‘𝑢) = 𝑝) |
| 32 | 20, 31 | r19.29a 3137 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑝 ∈ 𝐵) |
| 33 | 32 | ex 412 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → (𝑝 ∈ 𝐶 → 𝑝 ∈ 𝐵)) |
| 34 | 33 | ssrdv 3943 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐶 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 ∩ cin 3904 ⊆ wss 3905 {csn 4579 ◡ccnv 5622 dom cdm 5623 “ cima 5626 Fn wfn 6481 ⟶wf 6482 –1-1→wf1 6483 ‘cfv 6486 (class class class)co 7353 0cc0 11028 ...cfz 13428 ♯chash 14255 Word cword 14438 Basecbs 17138 SymGrpcsymg 19266 toCycctocyc 33061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-hash 14256 df-word 14439 df-concat 14496 df-substr 14566 df-pfx 14596 df-csh 14713 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-tset 17198 df-efmnd 18761 df-symg 19267 df-tocyc 33062 |
| This theorem is referenced by: cycpmconjslem2 33110 cycpmconjs 33111 cyc3conja 33112 |
| Copyright terms: Public domain | W3C validator |