Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmgcl Structured version   Visualization version   GIF version

Theorem cycpmgcl 33131
Description: Cyclic permutations are permutations, similar to cycpmcl 33094, but where the set of cyclic permutations of length 𝑃 is expressed in terms of a preimage. (Contributed by Thierry Arnoux, 13-Oct-2023.)
Hypotheses
Ref Expression
cycpmconjs.c 𝐶 = (𝑀 “ (♯ “ {𝑃}))
cycpmconjs.s 𝑆 = (SymGrp‘𝐷)
cycpmconjs.n 𝑁 = (♯‘𝐷)
cycpmconjs.m 𝑀 = (toCyc‘𝐷)
cycpmgcl.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
cycpmgcl ((𝐷𝑉𝑃 ∈ (0...𝑁)) → 𝐶𝐵)

Proof of Theorem cycpmgcl
Dummy variables 𝑝 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 (((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) ∧ (𝑀𝑢) = 𝑝) → (𝑀𝑢) = 𝑝)
2 cycpmconjs.m . . . . . . . 8 𝑀 = (toCyc‘𝐷)
3 simplll 774 . . . . . . . 8 ((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) → 𝐷𝑉)
4 simpr 484 . . . . . . . . . 10 ((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃})))
54elin1d 4153 . . . . . . . . 9 ((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) → 𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
6 elrabi 3639 . . . . . . . . 9 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} → 𝑢 ∈ Word 𝐷)
75, 6syl 17 . . . . . . . 8 ((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) → 𝑢 ∈ Word 𝐷)
8 id 22 . . . . . . . . . . . 12 (𝑤 = 𝑢𝑤 = 𝑢)
9 dmeq 5849 . . . . . . . . . . . 12 (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢)
10 eqidd 2734 . . . . . . . . . . . 12 (𝑤 = 𝑢𝐷 = 𝐷)
118, 9, 10f1eq123d 6762 . . . . . . . . . . 11 (𝑤 = 𝑢 → (𝑤:dom 𝑤1-1𝐷𝑢:dom 𝑢1-1𝐷))
1211elrab 3643 . . . . . . . . . 10 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
1312simprbi 496 . . . . . . . . 9 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} → 𝑢:dom 𝑢1-1𝐷)
145, 13syl 17 . . . . . . . 8 ((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) → 𝑢:dom 𝑢1-1𝐷)
15 cycpmconjs.s . . . . . . . 8 𝑆 = (SymGrp‘𝐷)
162, 3, 7, 14, 15cycpmcl 33094 . . . . . . 7 ((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) → (𝑀𝑢) ∈ (Base‘𝑆))
1716adantr 480 . . . . . 6 (((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) ∧ (𝑀𝑢) = 𝑝) → (𝑀𝑢) ∈ (Base‘𝑆))
18 cycpmgcl.b . . . . . 6 𝐵 = (Base‘𝑆)
1917, 18eleqtrrdi 2844 . . . . 5 (((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) ∧ (𝑀𝑢) = 𝑝) → (𝑀𝑢) ∈ 𝐵)
201, 19eqeltrrd 2834 . . . 4 (((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) ∧ (𝑀𝑢) = 𝑝) → 𝑝𝐵)
21 nfcv 2895 . . . . 5 𝑢𝑀
22 simpl 482 . . . . . . 7 ((𝐷𝑉𝑃 ∈ (0...𝑁)) → 𝐷𝑉)
232, 15, 18tocycf 33095 . . . . . . 7 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
24 ffn 6658 . . . . . . 7 (𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵𝑀 Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
2522, 23, 243syl 18 . . . . . 6 ((𝐷𝑉𝑃 ∈ (0...𝑁)) → 𝑀 Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
2625adantr 480 . . . . 5 (((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) → 𝑀 Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
27 cycpmconjs.c . . . . . . . 8 𝐶 = (𝑀 “ (♯ “ {𝑃}))
2827eleq2i 2825 . . . . . . 7 (𝑝𝐶𝑝 ∈ (𝑀 “ (♯ “ {𝑃})))
2928a1i 11 . . . . . 6 ((𝐷𝑉𝑃 ∈ (0...𝑁)) → (𝑝𝐶𝑝 ∈ (𝑀 “ (♯ “ {𝑃}))))
3029biimpa 476 . . . . 5 (((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) → 𝑝 ∈ (𝑀 “ (♯ “ {𝑃})))
3121, 26, 30fvelimad 6897 . . . 4 (((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))(𝑀𝑢) = 𝑝)
3220, 31r19.29a 3141 . . 3 (((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) → 𝑝𝐵)
3332ex 412 . 2 ((𝐷𝑉𝑃 ∈ (0...𝑁)) → (𝑝𝐶𝑝𝐵))
3433ssrdv 3936 1 ((𝐷𝑉𝑃 ∈ (0...𝑁)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {crab 3396  cin 3897  wss 3898  {csn 4577  ccnv 5620  dom cdm 5621  cima 5624   Fn wfn 6483  wf 6484  1-1wf1 6485  cfv 6488  (class class class)co 7354  0cc0 11015  ...cfz 13411  chash 14241  Word cword 14424  Basecbs 17124  SymGrpcsymg 19285  toCycctocyc 33084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-fz 13412  df-fzo 13559  df-fl 13700  df-mod 13778  df-hash 14242  df-word 14425  df-concat 14482  df-substr 14553  df-pfx 14583  df-csh 14700  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-tset 17184  df-efmnd 18781  df-symg 19286  df-tocyc 33085
This theorem is referenced by:  cycpmconjslem2  33133  cycpmconjs  33134  cyc3conja  33135
  Copyright terms: Public domain W3C validator