Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmgcl Structured version   Visualization version   GIF version

Theorem cycpmgcl 32183
Description: Cyclic permutations are permutations, similar to cycpmcl 32146, but where the set of cyclic permutations of length 𝑃 is expressed in terms of a preimage. (Contributed by Thierry Arnoux, 13-Oct-2023.)
Hypotheses
Ref Expression
cycpmconjs.c 𝐶 = (𝑀 “ (♯ “ {𝑃}))
cycpmconjs.s 𝑆 = (SymGrp‘𝐷)
cycpmconjs.n 𝑁 = (♯‘𝐷)
cycpmconjs.m 𝑀 = (toCyc‘𝐷)
cycpmgcl.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
cycpmgcl ((𝐷𝑉𝑃 ∈ (0...𝑁)) → 𝐶𝐵)

Proof of Theorem cycpmgcl
Dummy variables 𝑝 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . 5 (((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) ∧ (𝑀𝑢) = 𝑝) → (𝑀𝑢) = 𝑝)
2 cycpmconjs.m . . . . . . . 8 𝑀 = (toCyc‘𝐷)
3 simplll 773 . . . . . . . 8 ((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) → 𝐷𝑉)
4 simpr 485 . . . . . . . . . 10 ((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃})))
54elin1d 4194 . . . . . . . . 9 ((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) → 𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
6 elrabi 3673 . . . . . . . . 9 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} → 𝑢 ∈ Word 𝐷)
75, 6syl 17 . . . . . . . 8 ((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) → 𝑢 ∈ Word 𝐷)
8 id 22 . . . . . . . . . . . 12 (𝑤 = 𝑢𝑤 = 𝑢)
9 dmeq 5895 . . . . . . . . . . . 12 (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢)
10 eqidd 2732 . . . . . . . . . . . 12 (𝑤 = 𝑢𝐷 = 𝐷)
118, 9, 10f1eq123d 6812 . . . . . . . . . . 11 (𝑤 = 𝑢 → (𝑤:dom 𝑤1-1𝐷𝑢:dom 𝑢1-1𝐷))
1211elrab 3679 . . . . . . . . . 10 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ↔ (𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷))
1312simprbi 497 . . . . . . . . 9 (𝑢 ∈ {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} → 𝑢:dom 𝑢1-1𝐷)
145, 13syl 17 . . . . . . . 8 ((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) → 𝑢:dom 𝑢1-1𝐷)
15 cycpmconjs.s . . . . . . . 8 𝑆 = (SymGrp‘𝐷)
162, 3, 7, 14, 15cycpmcl 32146 . . . . . . 7 ((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) → (𝑀𝑢) ∈ (Base‘𝑆))
1716adantr 481 . . . . . 6 (((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) ∧ (𝑀𝑢) = 𝑝) → (𝑀𝑢) ∈ (Base‘𝑆))
18 cycpmgcl.b . . . . . 6 𝐵 = (Base‘𝑆)
1917, 18eleqtrrdi 2843 . . . . 5 (((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) ∧ (𝑀𝑢) = 𝑝) → (𝑀𝑢) ∈ 𝐵)
201, 19eqeltrrd 2833 . . . 4 (((((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))) ∧ (𝑀𝑢) = 𝑝) → 𝑝𝐵)
21 nfcv 2902 . . . . 5 𝑢𝑀
22 simpl 483 . . . . . . 7 ((𝐷𝑉𝑃 ∈ (0...𝑁)) → 𝐷𝑉)
232, 15, 18tocycf 32147 . . . . . . 7 (𝐷𝑉𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵)
24 ffn 6704 . . . . . . 7 (𝑀:{𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷}⟶𝐵𝑀 Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
2522, 23, 243syl 18 . . . . . 6 ((𝐷𝑉𝑃 ∈ (0...𝑁)) → 𝑀 Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
2625adantr 481 . . . . 5 (((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) → 𝑀 Fn {𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷})
27 cycpmconjs.c . . . . . . . 8 𝐶 = (𝑀 “ (♯ “ {𝑃}))
2827eleq2i 2824 . . . . . . 7 (𝑝𝐶𝑝 ∈ (𝑀 “ (♯ “ {𝑃})))
2928a1i 11 . . . . . 6 ((𝐷𝑉𝑃 ∈ (0...𝑁)) → (𝑝𝐶𝑝 ∈ (𝑀 “ (♯ “ {𝑃}))))
3029biimpa 477 . . . . 5 (((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) → 𝑝 ∈ (𝑀 “ (♯ “ {𝑃})))
3121, 26, 30fvelimad 6945 . . . 4 (((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷𝑤:dom 𝑤1-1𝐷} ∩ (♯ “ {𝑃}))(𝑀𝑢) = 𝑝)
3220, 31r19.29a 3161 . . 3 (((𝐷𝑉𝑃 ∈ (0...𝑁)) ∧ 𝑝𝐶) → 𝑝𝐵)
3332ex 413 . 2 ((𝐷𝑉𝑃 ∈ (0...𝑁)) → (𝑝𝐶𝑝𝐵))
3433ssrdv 3984 1 ((𝐷𝑉𝑃 ∈ (0...𝑁)) → 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {crab 3431  cin 3943  wss 3944  {csn 4622  ccnv 5668  dom cdm 5669  cima 5672   Fn wfn 6527  wf 6528  1-1wf1 6529  cfv 6532  (class class class)co 7393  0cc0 11092  ...cfz 13466  chash 14272  Word cword 14446  Basecbs 17126  SymGrpcsymg 19198  toCycctocyc 32136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9419  df-inf 9420  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-uz 12805  df-rp 12957  df-fz 13467  df-fzo 13610  df-fl 13739  df-mod 13817  df-hash 14273  df-word 14447  df-concat 14503  df-substr 14573  df-pfx 14603  df-csh 14721  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-tset 17198  df-efmnd 18725  df-symg 19199  df-tocyc 32137
This theorem is referenced by:  cycpmconjslem2  32185  cycpmconjs  32186  cyc3conja  32187
  Copyright terms: Public domain W3C validator