Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmgcl | Structured version Visualization version GIF version |
Description: Cyclic permutations are permutations, similar to cycpmcl 31285, but where the set of cyclic permutations of length 𝑃 is expressed in terms of a preimage. (Contributed by Thierry Arnoux, 13-Oct-2023.) |
Ref | Expression |
---|---|
cycpmconjs.c | ⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) |
cycpmconjs.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
cycpmconjs.n | ⊢ 𝑁 = (♯‘𝐷) |
cycpmconjs.m | ⊢ 𝑀 = (toCyc‘𝐷) |
cycpmgcl.b | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
cycpmgcl | ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐶 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . 5 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) = 𝑝) | |
2 | cycpmconjs.m | . . . . . . . 8 ⊢ 𝑀 = (toCyc‘𝐷) | |
3 | simplll 771 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝐷 ∈ 𝑉) | |
4 | simpr 484 | . . . . . . . . . 10 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) | |
5 | 4 | elin1d 4128 | . . . . . . . . 9 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
6 | elrabi 3611 | . . . . . . . . 9 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢 ∈ Word 𝐷) | |
7 | 5, 6 | syl 17 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢 ∈ Word 𝐷) |
8 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → 𝑤 = 𝑢) | |
9 | dmeq 5801 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → dom 𝑤 = dom 𝑢) | |
10 | eqidd 2739 | . . . . . . . . . . . 12 ⊢ (𝑤 = 𝑢 → 𝐷 = 𝐷) | |
11 | 8, 9, 10 | f1eq123d 6692 | . . . . . . . . . . 11 ⊢ (𝑤 = 𝑢 → (𝑤:dom 𝑤–1-1→𝐷 ↔ 𝑢:dom 𝑢–1-1→𝐷)) |
12 | 11 | elrab 3617 | . . . . . . . . . 10 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ↔ (𝑢 ∈ Word 𝐷 ∧ 𝑢:dom 𝑢–1-1→𝐷)) |
13 | 12 | simprbi 496 | . . . . . . . . 9 ⊢ (𝑢 ∈ {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} → 𝑢:dom 𝑢–1-1→𝐷) |
14 | 5, 13 | syl 17 | . . . . . . . 8 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → 𝑢:dom 𝑢–1-1→𝐷) |
15 | cycpmconjs.s | . . . . . . . 8 ⊢ 𝑆 = (SymGrp‘𝐷) | |
16 | 2, 3, 7, 14, 15 | cycpmcl 31285 | . . . . . . 7 ⊢ ((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) → (𝑀‘𝑢) ∈ (Base‘𝑆)) |
17 | 16 | adantr 480 | . . . . . 6 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) ∈ (Base‘𝑆)) |
18 | cycpmgcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
19 | 17, 18 | eleqtrrdi 2850 | . . . . 5 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → (𝑀‘𝑢) ∈ 𝐵) |
20 | 1, 19 | eqeltrrd 2840 | . . . 4 ⊢ (((((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) ∧ 𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))) ∧ (𝑀‘𝑢) = 𝑝) → 𝑝 ∈ 𝐵) |
21 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑢𝑀 | |
22 | simpl 482 | . . . . . . 7 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐷 ∈ 𝑉) | |
23 | 2, 15, 18 | tocycf 31286 | . . . . . . 7 ⊢ (𝐷 ∈ 𝑉 → 𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵) |
24 | ffn 6584 | . . . . . . 7 ⊢ (𝑀:{𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}⟶𝐵 → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) | |
25 | 22, 23, 24 | 3syl 18 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
26 | 25 | adantr 480 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑀 Fn {𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷}) |
27 | cycpmconjs.c | . . . . . . . 8 ⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) | |
28 | 27 | eleq2i 2830 | . . . . . . 7 ⊢ (𝑝 ∈ 𝐶 ↔ 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃}))) |
29 | 28 | a1i 11 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → (𝑝 ∈ 𝐶 ↔ 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃})))) |
30 | 29 | biimpa 476 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑝 ∈ (𝑀 “ (◡♯ “ {𝑃}))) |
31 | 21, 26, 30 | fvelimad 6818 | . . . 4 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → ∃𝑢 ∈ ({𝑤 ∈ Word 𝐷 ∣ 𝑤:dom 𝑤–1-1→𝐷} ∩ (◡♯ “ {𝑃}))(𝑀‘𝑢) = 𝑝) |
32 | 20, 31 | r19.29a 3217 | . . 3 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) ∧ 𝑝 ∈ 𝐶) → 𝑝 ∈ 𝐵) |
33 | 32 | ex 412 | . 2 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → (𝑝 ∈ 𝐶 → 𝑝 ∈ 𝐵)) |
34 | 33 | ssrdv 3923 | 1 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐶 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ∩ cin 3882 ⊆ wss 3883 {csn 4558 ◡ccnv 5579 dom cdm 5580 “ cima 5583 Fn wfn 6413 ⟶wf 6414 –1-1→wf1 6415 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ...cfz 13168 ♯chash 13972 Word cword 14145 Basecbs 16840 SymGrpcsymg 18889 toCycctocyc 31275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-hash 13973 df-word 14146 df-concat 14202 df-substr 14282 df-pfx 14312 df-csh 14430 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-tset 16907 df-efmnd 18423 df-symg 18890 df-tocyc 31276 |
This theorem is referenced by: cycpmconjslem2 31324 cycpmconjs 31325 cyc3conja 31326 |
Copyright terms: Public domain | W3C validator |