Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomlinOLD Structured version   Visualization version   GIF version

Theorem ghomlinOLD 37492
Description: Obsolete version of ghmlin 19184 as of 15-Mar-2020. Linearity of a group homomorphism. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
ghomlinOLD.1 𝑋 = ran 𝐺
Assertion
Ref Expression
ghomlinOLD (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵)))

Proof of Theorem ghomlinOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghomlinOLD.1 . . . . 5 𝑋 = ran 𝐺
2 eqid 2725 . . . . 5 ran 𝐻 = ran 𝐻
31, 2elghomOLD 37491 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:𝑋⟶ran 𝐻 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
43biimp3a 1465 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋⟶ran 𝐻 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
54simprd 494 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
6 fveq2 6896 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
76oveq1d 7434 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥)𝐻(𝐹𝑦)) = ((𝐹𝐴)𝐻(𝐹𝑦)))
8 oveq1 7426 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
98fveq2d 6900 . . . 4 (𝑥 = 𝐴 → (𝐹‘(𝑥𝐺𝑦)) = (𝐹‘(𝐴𝐺𝑦)))
107, 9eqeq12d 2741 . . 3 (𝑥 = 𝐴 → (((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)) ↔ ((𝐹𝐴)𝐻(𝐹𝑦)) = (𝐹‘(𝐴𝐺𝑦))))
11 fveq2 6896 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
1211oveq2d 7435 . . . 4 (𝑦 = 𝐵 → ((𝐹𝐴)𝐻(𝐹𝑦)) = ((𝐹𝐴)𝐻(𝐹𝐵)))
13 oveq2 7427 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1413fveq2d 6900 . . . 4 (𝑦 = 𝐵 → (𝐹‘(𝐴𝐺𝑦)) = (𝐹‘(𝐴𝐺𝐵)))
1512, 14eqeq12d 2741 . . 3 (𝑦 = 𝐵 → (((𝐹𝐴)𝐻(𝐹𝑦)) = (𝐹‘(𝐴𝐺𝑦)) ↔ ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵))))
1610, 15rspc2v 3617 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)) → ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵))))
175, 16mpan9 505 1 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  ran crn 5679  wf 6545  cfv 6549  (class class class)co 7419  GrpOpcgr 30371   GrpOpHom cghomOLD 37487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-ghomOLD 37488
This theorem is referenced by:  ghomidOLD  37493  ghomdiv  37496
  Copyright terms: Public domain W3C validator