Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomlinOLD Structured version   Visualization version   GIF version

Theorem ghomlinOLD 37889
Description: Obsolete version of ghmlin 19261 as of 15-Mar-2020. Linearity of a group homomorphism. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
ghomlinOLD.1 𝑋 = ran 𝐺
Assertion
Ref Expression
ghomlinOLD (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵)))

Proof of Theorem ghomlinOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghomlinOLD.1 . . . . 5 𝑋 = ran 𝐺
2 eqid 2737 . . . . 5 ran 𝐻 = ran 𝐻
31, 2elghomOLD 37888 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:𝑋⟶ran 𝐻 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
43biimp3a 1470 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋⟶ran 𝐻 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
54simprd 495 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
6 fveq2 6914 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
76oveq1d 7453 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥)𝐻(𝐹𝑦)) = ((𝐹𝐴)𝐻(𝐹𝑦)))
8 oveq1 7445 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
98fveq2d 6918 . . . 4 (𝑥 = 𝐴 → (𝐹‘(𝑥𝐺𝑦)) = (𝐹‘(𝐴𝐺𝑦)))
107, 9eqeq12d 2753 . . 3 (𝑥 = 𝐴 → (((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)) ↔ ((𝐹𝐴)𝐻(𝐹𝑦)) = (𝐹‘(𝐴𝐺𝑦))))
11 fveq2 6914 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
1211oveq2d 7454 . . . 4 (𝑦 = 𝐵 → ((𝐹𝐴)𝐻(𝐹𝑦)) = ((𝐹𝐴)𝐻(𝐹𝐵)))
13 oveq2 7446 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1413fveq2d 6918 . . . 4 (𝑦 = 𝐵 → (𝐹‘(𝐴𝐺𝑦)) = (𝐹‘(𝐴𝐺𝐵)))
1512, 14eqeq12d 2753 . . 3 (𝑦 = 𝐵 → (((𝐹𝐴)𝐻(𝐹𝑦)) = (𝐹‘(𝐴𝐺𝑦)) ↔ ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵))))
1610, 15rspc2v 3636 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)) → ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵))))
175, 16mpan9 506 1 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  wral 3061  ran crn 5694  wf 6565  cfv 6569  (class class class)co 7438  GrpOpcgr 30534   GrpOpHom cghomOLD 37884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-ghomOLD 37885
This theorem is referenced by:  ghomidOLD  37890  ghomdiv  37893
  Copyright terms: Public domain W3C validator