Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomlinOLD Structured version   Visualization version   GIF version

Theorem ghomlinOLD 36756
Description: Obsolete version of ghmlin 19097 as of 15-Mar-2020. Linearity of a group homomorphism. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
ghomlinOLD.1 𝑋 = ran 𝐺
Assertion
Ref Expression
ghomlinOLD (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ ((πΉβ€˜π΄)𝐻(πΉβ€˜π΅)) = (πΉβ€˜(𝐴𝐺𝐡)))

Proof of Theorem ghomlinOLD
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghomlinOLD.1 . . . . 5 𝑋 = ran 𝐺
2 eqid 2733 . . . . 5 ran 𝐻 = ran 𝐻
31, 2elghomOLD 36755 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) β†’ (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:π‘‹βŸΆran 𝐻 ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((πΉβ€˜π‘₯)𝐻(πΉβ€˜π‘¦)) = (πΉβ€˜(π‘₯𝐺𝑦)))))
43biimp3a 1470 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) β†’ (𝐹:π‘‹βŸΆran 𝐻 ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((πΉβ€˜π‘₯)𝐻(πΉβ€˜π‘¦)) = (πΉβ€˜(π‘₯𝐺𝑦))))
54simprd 497 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((πΉβ€˜π‘₯)𝐻(πΉβ€˜π‘¦)) = (πΉβ€˜(π‘₯𝐺𝑦)))
6 fveq2 6892 . . . . 5 (π‘₯ = 𝐴 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π΄))
76oveq1d 7424 . . . 4 (π‘₯ = 𝐴 β†’ ((πΉβ€˜π‘₯)𝐻(πΉβ€˜π‘¦)) = ((πΉβ€˜π΄)𝐻(πΉβ€˜π‘¦)))
8 oveq1 7416 . . . . 5 (π‘₯ = 𝐴 β†’ (π‘₯𝐺𝑦) = (𝐴𝐺𝑦))
98fveq2d 6896 . . . 4 (π‘₯ = 𝐴 β†’ (πΉβ€˜(π‘₯𝐺𝑦)) = (πΉβ€˜(𝐴𝐺𝑦)))
107, 9eqeq12d 2749 . . 3 (π‘₯ = 𝐴 β†’ (((πΉβ€˜π‘₯)𝐻(πΉβ€˜π‘¦)) = (πΉβ€˜(π‘₯𝐺𝑦)) ↔ ((πΉβ€˜π΄)𝐻(πΉβ€˜π‘¦)) = (πΉβ€˜(𝐴𝐺𝑦))))
11 fveq2 6892 . . . . 5 (𝑦 = 𝐡 β†’ (πΉβ€˜π‘¦) = (πΉβ€˜π΅))
1211oveq2d 7425 . . . 4 (𝑦 = 𝐡 β†’ ((πΉβ€˜π΄)𝐻(πΉβ€˜π‘¦)) = ((πΉβ€˜π΄)𝐻(πΉβ€˜π΅)))
13 oveq2 7417 . . . . 5 (𝑦 = 𝐡 β†’ (𝐴𝐺𝑦) = (𝐴𝐺𝐡))
1413fveq2d 6896 . . . 4 (𝑦 = 𝐡 β†’ (πΉβ€˜(𝐴𝐺𝑦)) = (πΉβ€˜(𝐴𝐺𝐡)))
1512, 14eqeq12d 2749 . . 3 (𝑦 = 𝐡 β†’ (((πΉβ€˜π΄)𝐻(πΉβ€˜π‘¦)) = (πΉβ€˜(𝐴𝐺𝑦)) ↔ ((πΉβ€˜π΄)𝐻(πΉβ€˜π΅)) = (πΉβ€˜(𝐴𝐺𝐡))))
1610, 15rspc2v 3623 . 2 ((𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 ((πΉβ€˜π‘₯)𝐻(πΉβ€˜π‘¦)) = (πΉβ€˜(π‘₯𝐺𝑦)) β†’ ((πΉβ€˜π΄)𝐻(πΉβ€˜π΅)) = (πΉβ€˜(𝐴𝐺𝐡))))
175, 16mpan9 508 1 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋)) β†’ ((πΉβ€˜π΄)𝐻(πΉβ€˜π΅)) = (πΉβ€˜(𝐴𝐺𝐡)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  ran crn 5678  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  GrpOpcgr 29742   GrpOpHom cghomOLD 36751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-ghomOLD 36752
This theorem is referenced by:  ghomidOLD  36757  ghomdiv  36760
  Copyright terms: Public domain W3C validator