![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ghomlinOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ghmlin 19184 as of 15-Mar-2020. Linearity of a group homomorphism. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ghomlinOLD.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
ghomlinOLD | ⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐹‘𝐴)𝐻(𝐹‘𝐵)) = (𝐹‘(𝐴𝐺𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghomlinOLD.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | eqid 2725 | . . . . 5 ⊢ ran 𝐻 = ran 𝐻 | |
3 | 1, 2 | elghomOLD 37491 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:𝑋⟶ran 𝐻 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
4 | 3 | biimp3a 1465 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋⟶ran 𝐻 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦)))) |
5 | 4 | simprd 494 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))) |
6 | fveq2 6896 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
7 | 6 | oveq1d 7434 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = ((𝐹‘𝐴)𝐻(𝐹‘𝑦))) |
8 | oveq1 7426 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) | |
9 | 8 | fveq2d 6900 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐹‘(𝑥𝐺𝑦)) = (𝐹‘(𝐴𝐺𝑦))) |
10 | 7, 9 | eqeq12d 2741 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦)) ↔ ((𝐹‘𝐴)𝐻(𝐹‘𝑦)) = (𝐹‘(𝐴𝐺𝑦)))) |
11 | fveq2 6896 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
12 | 11 | oveq2d 7435 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐹‘𝐴)𝐻(𝐹‘𝑦)) = ((𝐹‘𝐴)𝐻(𝐹‘𝐵))) |
13 | oveq2 7427 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) | |
14 | 13 | fveq2d 6900 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐹‘(𝐴𝐺𝑦)) = (𝐹‘(𝐴𝐺𝐵))) |
15 | 12, 14 | eqeq12d 2741 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐹‘𝐴)𝐻(𝐹‘𝑦)) = (𝐹‘(𝐴𝐺𝑦)) ↔ ((𝐹‘𝐴)𝐻(𝐹‘𝐵)) = (𝐹‘(𝐴𝐺𝐵)))) |
16 | 10, 15 | rspc2v 3617 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦)) → ((𝐹‘𝐴)𝐻(𝐹‘𝐵)) = (𝐹‘(𝐴𝐺𝐵)))) |
17 | 5, 16 | mpan9 505 | 1 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐹‘𝐴)𝐻(𝐹‘𝐵)) = (𝐹‘(𝐴𝐺𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ran crn 5679 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 GrpOpcgr 30371 GrpOpHom cghomOLD 37487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-ghomOLD 37488 |
This theorem is referenced by: ghomidOLD 37493 ghomdiv 37496 |
Copyright terms: Public domain | W3C validator |