Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomlinOLD Structured version   Visualization version   GIF version

Theorem ghomlinOLD 37927
Description: Obsolete version of ghmlin 19131 as of 15-Mar-2020. Linearity of a group homomorphism. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
ghomlinOLD.1 𝑋 = ran 𝐺
Assertion
Ref Expression
ghomlinOLD (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵)))

Proof of Theorem ghomlinOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghomlinOLD.1 . . . . 5 𝑋 = ran 𝐺
2 eqid 2731 . . . . 5 ran 𝐻 = ran 𝐻
31, 2elghomOLD 37926 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:𝑋⟶ran 𝐻 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
43biimp3a 1471 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋⟶ran 𝐻 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
54simprd 495 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
6 fveq2 6822 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
76oveq1d 7361 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥)𝐻(𝐹𝑦)) = ((𝐹𝐴)𝐻(𝐹𝑦)))
8 oveq1 7353 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
98fveq2d 6826 . . . 4 (𝑥 = 𝐴 → (𝐹‘(𝑥𝐺𝑦)) = (𝐹‘(𝐴𝐺𝑦)))
107, 9eqeq12d 2747 . . 3 (𝑥 = 𝐴 → (((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)) ↔ ((𝐹𝐴)𝐻(𝐹𝑦)) = (𝐹‘(𝐴𝐺𝑦))))
11 fveq2 6822 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
1211oveq2d 7362 . . . 4 (𝑦 = 𝐵 → ((𝐹𝐴)𝐻(𝐹𝑦)) = ((𝐹𝐴)𝐻(𝐹𝐵)))
13 oveq2 7354 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1413fveq2d 6826 . . . 4 (𝑦 = 𝐵 → (𝐹‘(𝐴𝐺𝑦)) = (𝐹‘(𝐴𝐺𝐵)))
1512, 14eqeq12d 2747 . . 3 (𝑦 = 𝐵 → (((𝐹𝐴)𝐻(𝐹𝑦)) = (𝐹‘(𝐴𝐺𝑦)) ↔ ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵))))
1610, 15rspc2v 3588 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)) → ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵))))
175, 16mpan9 506 1 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  ran crn 5617  wf 6477  cfv 6481  (class class class)co 7346  GrpOpcgr 30464   GrpOpHom cghomOLD 37922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-ghomOLD 37923
This theorem is referenced by:  ghomidOLD  37928  ghomdiv  37931
  Copyright terms: Public domain W3C validator