| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ghomlinOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of ghmlin 19153 as of 15-Mar-2020. Linearity of a group homomorphism. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| ghomlinOLD.1 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| ghomlinOLD | ⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐹‘𝐴)𝐻(𝐹‘𝐵)) = (𝐹‘(𝐴𝐺𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghomlinOLD.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 2 | eqid 2729 | . . . . 5 ⊢ ran 𝐻 = ran 𝐻 | |
| 3 | 1, 2 | elghomOLD 37881 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:𝑋⟶ran 𝐻 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) |
| 4 | 3 | biimp3a 1471 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋⟶ran 𝐻 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦)))) |
| 5 | 4 | simprd 495 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))) |
| 6 | fveq2 6858 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 7 | 6 | oveq1d 7402 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = ((𝐹‘𝐴)𝐻(𝐹‘𝑦))) |
| 8 | oveq1 7394 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) | |
| 9 | 8 | fveq2d 6862 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐹‘(𝑥𝐺𝑦)) = (𝐹‘(𝐴𝐺𝑦))) |
| 10 | 7, 9 | eqeq12d 2745 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦)) ↔ ((𝐹‘𝐴)𝐻(𝐹‘𝑦)) = (𝐹‘(𝐴𝐺𝑦)))) |
| 11 | fveq2 6858 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
| 12 | 11 | oveq2d 7403 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐹‘𝐴)𝐻(𝐹‘𝑦)) = ((𝐹‘𝐴)𝐻(𝐹‘𝐵))) |
| 13 | oveq2 7395 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) | |
| 14 | 13 | fveq2d 6862 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐹‘(𝐴𝐺𝑦)) = (𝐹‘(𝐴𝐺𝐵))) |
| 15 | 12, 14 | eqeq12d 2745 | . . 3 ⊢ (𝑦 = 𝐵 → (((𝐹‘𝐴)𝐻(𝐹‘𝑦)) = (𝐹‘(𝐴𝐺𝑦)) ↔ ((𝐹‘𝐴)𝐻(𝐹‘𝐵)) = (𝐹‘(𝐴𝐺𝐵)))) |
| 16 | 10, 15 | rspc2v 3599 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦)) → ((𝐹‘𝐴)𝐻(𝐹‘𝐵)) = (𝐹‘(𝐴𝐺𝐵)))) |
| 17 | 5, 16 | mpan9 506 | 1 ⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐹‘𝐴)𝐻(𝐹‘𝐵)) = (𝐹‘(𝐴𝐺𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ran crn 5639 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 GrpOpcgr 30418 GrpOpHom cghomOLD 37877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-ghomOLD 37878 |
| This theorem is referenced by: ghomidOLD 37883 ghomdiv 37886 |
| Copyright terms: Public domain | W3C validator |