Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomlinOLD Structured version   Visualization version   GIF version

Theorem ghomlinOLD 36046
Description: Obsolete version of ghmlin 18839 as of 15-Mar-2020. Linearity of a group homomorphism. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
ghomlinOLD.1 𝑋 = ran 𝐺
Assertion
Ref Expression
ghomlinOLD (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵)))

Proof of Theorem ghomlinOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghomlinOLD.1 . . . . 5 𝑋 = ran 𝐺
2 eqid 2738 . . . . 5 ran 𝐻 = ran 𝐻
31, 2elghomOLD 36045 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:𝑋⟶ran 𝐻 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
43biimp3a 1468 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋⟶ran 𝐻 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
54simprd 496 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
6 fveq2 6774 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
76oveq1d 7290 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥)𝐻(𝐹𝑦)) = ((𝐹𝐴)𝐻(𝐹𝑦)))
8 oveq1 7282 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
98fveq2d 6778 . . . 4 (𝑥 = 𝐴 → (𝐹‘(𝑥𝐺𝑦)) = (𝐹‘(𝐴𝐺𝑦)))
107, 9eqeq12d 2754 . . 3 (𝑥 = 𝐴 → (((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)) ↔ ((𝐹𝐴)𝐻(𝐹𝑦)) = (𝐹‘(𝐴𝐺𝑦))))
11 fveq2 6774 . . . . 5 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
1211oveq2d 7291 . . . 4 (𝑦 = 𝐵 → ((𝐹𝐴)𝐻(𝐹𝑦)) = ((𝐹𝐴)𝐻(𝐹𝐵)))
13 oveq2 7283 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1413fveq2d 6778 . . . 4 (𝑦 = 𝐵 → (𝐹‘(𝐴𝐺𝑦)) = (𝐹‘(𝐴𝐺𝐵)))
1512, 14eqeq12d 2754 . . 3 (𝑦 = 𝐵 → (((𝐹𝐴)𝐻(𝐹𝑦)) = (𝐹‘(𝐴𝐺𝑦)) ↔ ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵))))
1610, 15rspc2v 3570 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)) → ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵))))
175, 16mpan9 507 1 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)𝐻(𝐹𝐵)) = (𝐹‘(𝐴𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  GrpOpcgr 28851   GrpOpHom cghomOLD 36041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-ghomOLD 36042
This theorem is referenced by:  ghomidOLD  36047  ghomdiv  36050
  Copyright terms: Public domain W3C validator