| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmlin | Structured version Visualization version GIF version | ||
| Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmlin.x | ⊢ 𝑋 = (Base‘𝑆) |
| ghmlin.a | ⊢ + = (+g‘𝑆) |
| ghmlin.b | ⊢ ⨣ = (+g‘𝑇) |
| Ref | Expression |
|---|---|
| ghmlin | ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmlin.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑆) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | ghmlin.a | . . . . . 6 ⊢ + = (+g‘𝑆) | |
| 4 | ghmlin.b | . . . . . 6 ⊢ ⨣ = (+g‘𝑇) | |
| 5 | 1, 2, 3, 4 | isghm 19147 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))))) |
| 6 | 5 | simprbi 496 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)))) |
| 7 | 6 | simprd 495 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) |
| 8 | fvoveq1 7410 | . . . . 5 ⊢ (𝑎 = 𝑈 → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑈 + 𝑏))) | |
| 9 | fveq2 6858 | . . . . . 6 ⊢ (𝑎 = 𝑈 → (𝐹‘𝑎) = (𝐹‘𝑈)) | |
| 10 | 9 | oveq1d 7402 | . . . . 5 ⊢ (𝑎 = 𝑈 → ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏))) |
| 11 | 8, 10 | eqeq12d 2745 | . . . 4 ⊢ (𝑎 = 𝑈 → ((𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) ↔ (𝐹‘(𝑈 + 𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)))) |
| 12 | oveq2 7395 | . . . . . 6 ⊢ (𝑏 = 𝑉 → (𝑈 + 𝑏) = (𝑈 + 𝑉)) | |
| 13 | 12 | fveq2d 6862 | . . . . 5 ⊢ (𝑏 = 𝑉 → (𝐹‘(𝑈 + 𝑏)) = (𝐹‘(𝑈 + 𝑉))) |
| 14 | fveq2 6858 | . . . . . 6 ⊢ (𝑏 = 𝑉 → (𝐹‘𝑏) = (𝐹‘𝑉)) | |
| 15 | 14 | oveq2d 7403 | . . . . 5 ⊢ (𝑏 = 𝑉 → ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| 16 | 13, 15 | eqeq12d 2745 | . . . 4 ⊢ (𝑏 = 𝑉 → ((𝐹‘(𝑈 + 𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)) ↔ (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉)))) |
| 17 | 11, 16 | rspc2v 3599 | . . 3 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉)))) |
| 18 | 7, 17 | mpan9 506 | . 2 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| 19 | 18 | 3impb 1114 | 1 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Grpcgrp 18865 GrpHom cghm 19144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-ghm 19145 |
| This theorem is referenced by: ghmid 19154 ghminv 19155 ghmsub 19156 ghmmhm 19158 ghmrn 19161 resghm 19164 ghmpreima 19170 ghmnsgima 19172 ghmnsgpreima 19173 ghmf1o 19180 ghmqusnsglem1 19212 ghmqusnsg 19214 ghmquskerlem1 19215 ghmquskerlem3 19218 lactghmga 19335 invghm 19763 ghmplusg 19776 rhmopp 20418 srngadd 20760 islmhm2 20945 rhmpreimaidl 21187 cygznlem3 21479 psgnco 21492 evpmodpmf1o 21505 ipdir 21548 evlslem1 21989 mpfind 22014 evl1addd 22228 mdetralt 22495 cpmatacl 22603 mat2pmatghm 22617 ghmcnp 24002 ply1rem 26071 dchrptlem2 27176 abliso 32977 rhmimaidl 33403 r1pquslmic 33576 dimkerim 33623 zrhcntr 33969 qqhghm 33978 qqhrhm 33979 fldhmf1 42078 aks6d1c1p3 42098 aks6d1c5lem1 42124 aks6d1c5lem2 42126 aks5lem3a 42177 evlsaddval 42556 evladdval 42563 gicabl 43088 |
| Copyright terms: Public domain | W3C validator |