| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmlin | Structured version Visualization version GIF version | ||
| Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmlin.x | ⊢ 𝑋 = (Base‘𝑆) |
| ghmlin.a | ⊢ + = (+g‘𝑆) |
| ghmlin.b | ⊢ ⨣ = (+g‘𝑇) |
| Ref | Expression |
|---|---|
| ghmlin | ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmlin.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑆) | |
| 2 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | ghmlin.a | . . . . . 6 ⊢ + = (+g‘𝑆) | |
| 4 | ghmlin.b | . . . . . 6 ⊢ ⨣ = (+g‘𝑇) | |
| 5 | 1, 2, 3, 4 | isghm 19129 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))))) |
| 6 | 5 | simprbi 496 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)))) |
| 7 | 6 | simprd 495 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) |
| 8 | fvoveq1 7375 | . . . . 5 ⊢ (𝑎 = 𝑈 → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑈 + 𝑏))) | |
| 9 | fveq2 6828 | . . . . . 6 ⊢ (𝑎 = 𝑈 → (𝐹‘𝑎) = (𝐹‘𝑈)) | |
| 10 | 9 | oveq1d 7367 | . . . . 5 ⊢ (𝑎 = 𝑈 → ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏))) |
| 11 | 8, 10 | eqeq12d 2749 | . . . 4 ⊢ (𝑎 = 𝑈 → ((𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) ↔ (𝐹‘(𝑈 + 𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)))) |
| 12 | oveq2 7360 | . . . . . 6 ⊢ (𝑏 = 𝑉 → (𝑈 + 𝑏) = (𝑈 + 𝑉)) | |
| 13 | 12 | fveq2d 6832 | . . . . 5 ⊢ (𝑏 = 𝑉 → (𝐹‘(𝑈 + 𝑏)) = (𝐹‘(𝑈 + 𝑉))) |
| 14 | fveq2 6828 | . . . . . 6 ⊢ (𝑏 = 𝑉 → (𝐹‘𝑏) = (𝐹‘𝑉)) | |
| 15 | 14 | oveq2d 7368 | . . . . 5 ⊢ (𝑏 = 𝑉 → ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| 16 | 13, 15 | eqeq12d 2749 | . . . 4 ⊢ (𝑏 = 𝑉 → ((𝐹‘(𝑈 + 𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)) ↔ (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉)))) |
| 17 | 11, 16 | rspc2v 3584 | . . 3 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉)))) |
| 18 | 7, 17 | mpan9 506 | . 2 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| 19 | 18 | 3impb 1114 | 1 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 Grpcgrp 18848 GrpHom cghm 19126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-ghm 19127 |
| This theorem is referenced by: ghmid 19136 ghminv 19137 ghmsub 19138 ghmmhm 19140 ghmrn 19143 resghm 19146 ghmpreima 19152 ghmnsgima 19154 ghmnsgpreima 19155 ghmf1o 19162 ghmqusnsglem1 19194 ghmqusnsg 19196 ghmquskerlem1 19197 ghmquskerlem3 19200 lactghmga 19319 invghm 19747 ghmplusg 19760 rhmopp 20426 srngadd 20768 islmhm2 20974 rhmpreimaidl 21216 cygznlem3 21508 psgnco 21522 evpmodpmf1o 21535 ipdir 21578 evlslem1 22018 mpfind 22043 evl1addd 22257 mdetralt 22524 cpmatacl 22632 mat2pmatghm 22646 ghmcnp 24031 ply1rem 26099 dchrptlem2 27204 abliso 33024 rhmimaidl 33404 r1pquslmic 33578 dimkerim 33661 zrhcntr 34013 qqhghm 34022 qqhrhm 34023 fldhmf1 42203 aks6d1c1p3 42223 aks6d1c5lem1 42249 aks6d1c5lem2 42251 aks5lem3a 42302 evlsaddval 42686 evladdval 42693 gicabl 43216 |
| Copyright terms: Public domain | W3C validator |