| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmlin | Structured version Visualization version GIF version | ||
| Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmlin.x | ⊢ 𝑋 = (Base‘𝑆) |
| ghmlin.a | ⊢ + = (+g‘𝑆) |
| ghmlin.b | ⊢ ⨣ = (+g‘𝑇) |
| Ref | Expression |
|---|---|
| ghmlin | ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmlin.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝑆) | |
| 2 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | ghmlin.a | . . . . . 6 ⊢ + = (+g‘𝑆) | |
| 4 | ghmlin.b | . . . . . 6 ⊢ ⨣ = (+g‘𝑇) | |
| 5 | 1, 2, 3, 4 | isghm 19198 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))))) |
| 6 | 5 | simprbi 496 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)))) |
| 7 | 6 | simprd 495 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏))) |
| 8 | fvoveq1 7428 | . . . . 5 ⊢ (𝑎 = 𝑈 → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑈 + 𝑏))) | |
| 9 | fveq2 6876 | . . . . . 6 ⊢ (𝑎 = 𝑈 → (𝐹‘𝑎) = (𝐹‘𝑈)) | |
| 10 | 9 | oveq1d 7420 | . . . . 5 ⊢ (𝑎 = 𝑈 → ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏))) |
| 11 | 8, 10 | eqeq12d 2751 | . . . 4 ⊢ (𝑎 = 𝑈 → ((𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) ↔ (𝐹‘(𝑈 + 𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)))) |
| 12 | oveq2 7413 | . . . . . 6 ⊢ (𝑏 = 𝑉 → (𝑈 + 𝑏) = (𝑈 + 𝑉)) | |
| 13 | 12 | fveq2d 6880 | . . . . 5 ⊢ (𝑏 = 𝑉 → (𝐹‘(𝑈 + 𝑏)) = (𝐹‘(𝑈 + 𝑉))) |
| 14 | fveq2 6876 | . . . . . 6 ⊢ (𝑏 = 𝑉 → (𝐹‘𝑏) = (𝐹‘𝑉)) | |
| 15 | 14 | oveq2d 7421 | . . . . 5 ⊢ (𝑏 = 𝑉 → ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| 16 | 13, 15 | eqeq12d 2751 | . . . 4 ⊢ (𝑏 = 𝑉 → ((𝐹‘(𝑈 + 𝑏)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑏)) ↔ (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉)))) |
| 17 | 11, 16 | rspc2v 3612 | . . 3 ⊢ ((𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹‘𝑎) ⨣ (𝐹‘𝑏)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉)))) |
| 18 | 7, 17 | mpan9 506 | . 2 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| 19 | 18 | 3impb 1114 | 1 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Grpcgrp 18916 GrpHom cghm 19195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 df-ghm 19196 |
| This theorem is referenced by: ghmid 19205 ghminv 19206 ghmsub 19207 ghmmhm 19209 ghmrn 19212 resghm 19215 ghmpreima 19221 ghmnsgima 19223 ghmnsgpreima 19224 ghmf1o 19231 ghmqusnsglem1 19263 ghmqusnsg 19265 ghmquskerlem1 19266 ghmquskerlem3 19269 lactghmga 19386 invghm 19814 ghmplusg 19827 rhmopp 20469 srngadd 20811 islmhm2 20996 rhmpreimaidl 21238 cygznlem3 21530 psgnco 21543 evpmodpmf1o 21556 ipdir 21599 evlslem1 22040 mpfind 22065 evl1addd 22279 mdetralt 22546 cpmatacl 22654 mat2pmatghm 22668 ghmcnp 24053 ply1rem 26123 dchrptlem2 27228 abliso 33031 rhmimaidl 33447 r1pquslmic 33620 dimkerim 33667 zrhcntr 34010 qqhghm 34019 qqhrhm 34020 fldhmf1 42103 aks6d1c1p3 42123 aks6d1c5lem1 42149 aks6d1c5lem2 42151 aks5lem3a 42202 evlsaddval 42591 evladdval 42598 gicabl 43123 |
| Copyright terms: Public domain | W3C validator |