MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmlin Structured version   Visualization version   GIF version

Theorem ghmlin 19142
Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmlin.x 𝑋 = (Base‘𝑆)
ghmlin.a + = (+g𝑆)
ghmlin.b = (+g𝑇)
Assertion
Ref Expression
ghmlin ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))

Proof of Theorem ghmlin
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmlin.x . . . . . 6 𝑋 = (Base‘𝑆)
2 eqid 2731 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
3 ghmlin.a . . . . . 6 + = (+g𝑆)
4 ghmlin.b . . . . . 6 = (+g𝑇)
51, 2, 3, 4isghm 19137 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))))
65simprbi 496 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏))))
76simprd 495 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))
8 fvoveq1 7435 . . . . 5 (𝑎 = 𝑈 → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑈 + 𝑏)))
9 fveq2 6891 . . . . . 6 (𝑎 = 𝑈 → (𝐹𝑎) = (𝐹𝑈))
109oveq1d 7427 . . . . 5 (𝑎 = 𝑈 → ((𝐹𝑎) (𝐹𝑏)) = ((𝐹𝑈) (𝐹𝑏)))
118, 10eqeq12d 2747 . . . 4 (𝑎 = 𝑈 → ((𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)) ↔ (𝐹‘(𝑈 + 𝑏)) = ((𝐹𝑈) (𝐹𝑏))))
12 oveq2 7420 . . . . . 6 (𝑏 = 𝑉 → (𝑈 + 𝑏) = (𝑈 + 𝑉))
1312fveq2d 6895 . . . . 5 (𝑏 = 𝑉 → (𝐹‘(𝑈 + 𝑏)) = (𝐹‘(𝑈 + 𝑉)))
14 fveq2 6891 . . . . . 6 (𝑏 = 𝑉 → (𝐹𝑏) = (𝐹𝑉))
1514oveq2d 7428 . . . . 5 (𝑏 = 𝑉 → ((𝐹𝑈) (𝐹𝑏)) = ((𝐹𝑈) (𝐹𝑉)))
1613, 15eqeq12d 2747 . . . 4 (𝑏 = 𝑉 → ((𝐹‘(𝑈 + 𝑏)) = ((𝐹𝑈) (𝐹𝑏)) ↔ (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉))))
1711, 16rspc2v 3622 . . 3 ((𝑈𝑋𝑉𝑋) → (∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉))))
187, 17mpan9 506 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑈𝑋𝑉𝑋)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))
19183impb 1114 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  wf 6539  cfv 6543  (class class class)co 7412  Basecbs 17151  +gcplusg 17204  Grpcgrp 18861   GrpHom cghm 19134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-ghm 19135
This theorem is referenced by:  ghmid  19143  ghminv  19144  ghmsub  19145  ghmmhm  19147  ghmrn  19150  resghm  19153  ghmpreima  19159  ghmnsgima  19161  ghmnsgpreima  19162  ghmf1o  19169  lactghmga  19321  invghm  19749  ghmplusg  19762  rhmopp  20407  srngadd  20696  islmhm2  20882  cygznlem3  21435  psgnco  21446  evpmodpmf1o  21459  ipdir  21502  evlslem1  21956  mpfind  21981  evl1addd  22180  mdetralt  22430  cpmatacl  22538  mat2pmatghm  22552  ghmcnp  23939  ply1rem  26019  dchrptlem2  27112  abliso  32631  ghmquskerlem1  32969  ghmquskerlem3  32972  rhmpreimaidl  32978  rhmimaidl  32991  r1pquslmic  33123  dimkerim  33167  qqhghm  33433  qqhrhm  33434  fldhmf1  41424  evlsaddval  41605  evladdval  41612  gicabl  42306
  Copyright terms: Public domain W3C validator