MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmlin Structured version   Visualization version   GIF version

Theorem ghmlin 17872
Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmlin.x 𝑋 = (Base‘𝑆)
ghmlin.a + = (+g𝑆)
ghmlin.b = (+g𝑇)
Assertion
Ref Expression
ghmlin ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))

Proof of Theorem ghmlin
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmlin.x . . . . . 6 𝑋 = (Base‘𝑆)
2 eqid 2771 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
3 ghmlin.a . . . . . 6 + = (+g𝑆)
4 ghmlin.b . . . . . 6 = (+g𝑇)
51, 2, 3, 4isghm 17867 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))))
65simprbi 478 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏))))
76simprd 477 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))
8 fvoveq1 6815 . . . . 5 (𝑎 = 𝑈 → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑈 + 𝑏)))
9 fveq2 6332 . . . . . 6 (𝑎 = 𝑈 → (𝐹𝑎) = (𝐹𝑈))
109oveq1d 6807 . . . . 5 (𝑎 = 𝑈 → ((𝐹𝑎) (𝐹𝑏)) = ((𝐹𝑈) (𝐹𝑏)))
118, 10eqeq12d 2786 . . . 4 (𝑎 = 𝑈 → ((𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)) ↔ (𝐹‘(𝑈 + 𝑏)) = ((𝐹𝑈) (𝐹𝑏))))
12 oveq2 6800 . . . . . 6 (𝑏 = 𝑉 → (𝑈 + 𝑏) = (𝑈 + 𝑉))
1312fveq2d 6336 . . . . 5 (𝑏 = 𝑉 → (𝐹‘(𝑈 + 𝑏)) = (𝐹‘(𝑈 + 𝑉)))
14 fveq2 6332 . . . . . 6 (𝑏 = 𝑉 → (𝐹𝑏) = (𝐹𝑉))
1514oveq2d 6808 . . . . 5 (𝑏 = 𝑉 → ((𝐹𝑈) (𝐹𝑏)) = ((𝐹𝑈) (𝐹𝑉)))
1613, 15eqeq12d 2786 . . . 4 (𝑏 = 𝑉 → ((𝐹‘(𝑈 + 𝑏)) = ((𝐹𝑈) (𝐹𝑏)) ↔ (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉))))
1711, 16rspc2v 3472 . . 3 ((𝑈𝑋𝑉𝑋) → (∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉))))
187, 17mpan9 490 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑈𝑋𝑉𝑋)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))
19183impb 1107 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wf 6027  cfv 6031  (class class class)co 6792  Basecbs 16063  +gcplusg 16148  Grpcgrp 17629   GrpHom cghm 17864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-ghm 17865
This theorem is referenced by:  ghmid  17873  ghminv  17874  ghmsub  17875  ghmmhm  17877  ghmrn  17880  resghm  17883  ghmpreima  17889  ghmnsgima  17891  ghmnsgpreima  17892  ghmf1o  17897  lactghmga  18030  invghm  18445  ghmplusg  18455  srngadd  19066  islmhm2  19250  evlslem1  19729  mpfind  19750  evl1addd  19919  cygznlem3  20132  psgnco  20143  evpmodpmf1o  20157  ipdir  20200  mdetralt  20631  cpmatacl  20740  mat2pmatghm  20754  ghmcnp  22137  ply1rem  24142  dchrptlem2  25210  abliso  30033  rhmopp  30156  qqhghm  30369  qqhrhm  30370  gicabl  38191
  Copyright terms: Public domain W3C validator