Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomdiv Structured version   Visualization version   GIF version

Theorem ghomdiv 38005
Description: Group homomorphisms preserve division. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
ghomdiv.1 𝑋 = ran 𝐺
ghomdiv.2 𝐷 = ( /𝑔𝐺)
ghomdiv.3 𝐶 = ( /𝑔𝐻)
Assertion
Ref Expression
ghomdiv (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐷𝐵)) = ((𝐹𝐴)𝐶(𝐹𝐵)))

Proof of Theorem ghomdiv
StepHypRef Expression
1 simpl2 1193 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → 𝐻 ∈ GrpOp)
2 ghomdiv.1 . . . . . . 7 𝑋 = ran 𝐺
3 eqid 2733 . . . . . . 7 ran 𝐻 = ran 𝐻
42, 3ghomf 38003 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:𝑋⟶ran 𝐻)
54ffvelcdmda 7026 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ran 𝐻)
65adantrr 717 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ∈ ran 𝐻)
74ffvelcdmda 7026 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝐵𝑋) → (𝐹𝐵) ∈ ran 𝐻)
87adantrl 716 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐵) ∈ ran 𝐻)
9 ghomdiv.3 . . . . 5 𝐶 = ( /𝑔𝐻)
103, 9grponpcan 30544 . . . 4 ((𝐻 ∈ GrpOp ∧ (𝐹𝐴) ∈ ran 𝐻 ∧ (𝐹𝐵) ∈ ran 𝐻) → (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)) = (𝐹𝐴))
111, 6, 8, 10syl3anc 1373 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)) = (𝐹𝐴))
12 ghomdiv.2 . . . . . . 7 𝐷 = ( /𝑔𝐺)
132, 12grponpcan 30544 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)
14133expb 1120 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)
15143ad2antl1 1186 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)
1615fveq2d 6835 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = (𝐹𝐴))
172, 12grpodivcl 30540 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ 𝑋)
18173expb 1120 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ∈ 𝑋)
19 simprr 772 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
2018, 19jca 511 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) ∈ 𝑋𝐵𝑋))
21203ad2antl1 1186 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) ∈ 𝑋𝐵𝑋))
222ghomlinOLD 38001 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ ((𝐴𝐷𝐵) ∈ 𝑋𝐵𝑋)) → ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)) = (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)))
2322eqcomd 2739 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ ((𝐴𝐷𝐵) ∈ 𝑋𝐵𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)))
2421, 23syldan 591 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)))
2511, 16, 243eqtr2rd 2775 . 2 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)) = (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)))
26183ad2antl1 1186 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ∈ 𝑋)
274ffvelcdmda 7026 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝐷𝐵) ∈ 𝑋) → (𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻)
2826, 27syldan 591 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻)
293, 9grpodivcl 30540 . . . 4 ((𝐻 ∈ GrpOp ∧ (𝐹𝐴) ∈ ran 𝐻 ∧ (𝐹𝐵) ∈ ran 𝐻) → ((𝐹𝐴)𝐶(𝐹𝐵)) ∈ ran 𝐻)
301, 6, 8, 29syl3anc 1373 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)𝐶(𝐹𝐵)) ∈ ran 𝐻)
313grporcan 30519 . . 3 ((𝐻 ∈ GrpOp ∧ ((𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻 ∧ ((𝐹𝐴)𝐶(𝐹𝐵)) ∈ ran 𝐻 ∧ (𝐹𝐵) ∈ ran 𝐻)) → (((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)) = (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)) ↔ (𝐹‘(𝐴𝐷𝐵)) = ((𝐹𝐴)𝐶(𝐹𝐵))))
321, 28, 30, 8, 31syl13anc 1374 . 2 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)) = (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)) ↔ (𝐹‘(𝐴𝐷𝐵)) = ((𝐹𝐴)𝐶(𝐹𝐵))))
3325, 32mpbid 232 1 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐷𝐵)) = ((𝐹𝐴)𝐶(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  ran crn 5622  cfv 6489  (class class class)co 7355  GrpOpcgr 30490   /𝑔 cgs 30493   GrpOpHom cghomOLD 37996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-grpo 30494  df-gid 30495  df-ginv 30496  df-gdiv 30497  df-ghomOLD 37997
This theorem is referenced by:  grpokerinj  38006  rngohomsub  38086
  Copyright terms: Public domain W3C validator