Proof of Theorem ghomdiv
Step | Hyp | Ref
| Expression |
1 | | simpl2 1190 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐻 ∈ GrpOp) |
2 | | ghomdiv.1 |
. . . . . . 7
⊢ 𝑋 = ran 𝐺 |
3 | | eqid 2738 |
. . . . . . 7
⊢ ran 𝐻 = ran 𝐻 |
4 | 2, 3 | ghomf 35975 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:𝑋⟶ran 𝐻) |
5 | 4 | ffvelrnda 6943 |
. . . . 5
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ ran 𝐻) |
6 | 5 | adantrr 713 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐴) ∈ ran 𝐻) |
7 | 4 | ffvelrnda 6943 |
. . . . 5
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝐵 ∈ 𝑋) → (𝐹‘𝐵) ∈ ran 𝐻) |
8 | 7 | adantrl 712 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐵) ∈ ran 𝐻) |
9 | | ghomdiv.3 |
. . . . 5
⊢ 𝐶 = ( /𝑔
‘𝐻) |
10 | 3, 9 | grponpcan 28806 |
. . . 4
⊢ ((𝐻 ∈ GrpOp ∧ (𝐹‘𝐴) ∈ ran 𝐻 ∧ (𝐹‘𝐵) ∈ ran 𝐻) → (((𝐹‘𝐴)𝐶(𝐹‘𝐵))𝐻(𝐹‘𝐵)) = (𝐹‘𝐴)) |
11 | 1, 6, 8, 10 | syl3anc 1369 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((𝐹‘𝐴)𝐶(𝐹‘𝐵))𝐻(𝐹‘𝐵)) = (𝐹‘𝐴)) |
12 | | ghomdiv.2 |
. . . . . . 7
⊢ 𝐷 = ( /𝑔
‘𝐺) |
13 | 2, 12 | grponpcan 28806 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) |
14 | 13 | 3expb 1118 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) |
15 | 14 | 3ad2antl1 1183 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) |
16 | 15 | fveq2d 6760 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = (𝐹‘𝐴)) |
17 | 2, 12 | grpodivcl 28802 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ 𝑋) |
18 | 17 | 3expb 1118 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ∈ 𝑋) |
19 | | simprr 769 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
20 | 18, 19 | jca 511 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐷𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
21 | 20 | 3ad2antl1 1183 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐷𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
22 | 2 | ghomlinOLD 35973 |
. . . . 5
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ ((𝐴𝐷𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹‘𝐵)) = (𝐹‘((𝐴𝐷𝐵)𝐺𝐵))) |
23 | 22 | eqcomd 2744 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ ((𝐴𝐷𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹‘𝐵))) |
24 | 21, 23 | syldan 590 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹‘𝐵))) |
25 | 11, 16, 24 | 3eqtr2rd 2785 |
. 2
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹‘𝐵)) = (((𝐹‘𝐴)𝐶(𝐹‘𝐵))𝐻(𝐹‘𝐵))) |
26 | 18 | 3ad2antl1 1183 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ∈ 𝑋) |
27 | 4 | ffvelrnda 6943 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝐷𝐵) ∈ 𝑋) → (𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻) |
28 | 26, 27 | syldan 590 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻) |
29 | 3, 9 | grpodivcl 28802 |
. . . 4
⊢ ((𝐻 ∈ GrpOp ∧ (𝐹‘𝐴) ∈ ran 𝐻 ∧ (𝐹‘𝐵) ∈ ran 𝐻) → ((𝐹‘𝐴)𝐶(𝐹‘𝐵)) ∈ ran 𝐻) |
30 | 1, 6, 8, 29 | syl3anc 1369 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐹‘𝐴)𝐶(𝐹‘𝐵)) ∈ ran 𝐻) |
31 | 3 | grporcan 28781 |
. . 3
⊢ ((𝐻 ∈ GrpOp ∧ ((𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻 ∧ ((𝐹‘𝐴)𝐶(𝐹‘𝐵)) ∈ ran 𝐻 ∧ (𝐹‘𝐵) ∈ ran 𝐻)) → (((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹‘𝐵)) = (((𝐹‘𝐴)𝐶(𝐹‘𝐵))𝐻(𝐹‘𝐵)) ↔ (𝐹‘(𝐴𝐷𝐵)) = ((𝐹‘𝐴)𝐶(𝐹‘𝐵)))) |
32 | 1, 28, 30, 8, 31 | syl13anc 1370 |
. 2
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹‘𝐵)) = (((𝐹‘𝐴)𝐶(𝐹‘𝐵))𝐻(𝐹‘𝐵)) ↔ (𝐹‘(𝐴𝐷𝐵)) = ((𝐹‘𝐴)𝐶(𝐹‘𝐵)))) |
33 | 25, 32 | mpbid 231 |
1
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐷𝐵)) = ((𝐹‘𝐴)𝐶(𝐹‘𝐵))) |