Proof of Theorem ghomdiv
| Step | Hyp | Ref
| Expression |
| 1 | | simpl2 1193 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐻 ∈ GrpOp) |
| 2 | | ghomdiv.1 |
. . . . . . 7
⊢ 𝑋 = ran 𝐺 |
| 3 | | eqid 2737 |
. . . . . . 7
⊢ ran 𝐻 = ran 𝐻 |
| 4 | 2, 3 | ghomf 37897 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:𝑋⟶ran 𝐻) |
| 5 | 4 | ffvelcdmda 7104 |
. . . . 5
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ ran 𝐻) |
| 6 | 5 | adantrr 717 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐴) ∈ ran 𝐻) |
| 7 | 4 | ffvelcdmda 7104 |
. . . . 5
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝐵 ∈ 𝑋) → (𝐹‘𝐵) ∈ ran 𝐻) |
| 8 | 7 | adantrl 716 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘𝐵) ∈ ran 𝐻) |
| 9 | | ghomdiv.3 |
. . . . 5
⊢ 𝐶 = ( /𝑔
‘𝐻) |
| 10 | 3, 9 | grponpcan 30562 |
. . . 4
⊢ ((𝐻 ∈ GrpOp ∧ (𝐹‘𝐴) ∈ ran 𝐻 ∧ (𝐹‘𝐵) ∈ ran 𝐻) → (((𝐹‘𝐴)𝐶(𝐹‘𝐵))𝐻(𝐹‘𝐵)) = (𝐹‘𝐴)) |
| 11 | 1, 6, 8, 10 | syl3anc 1373 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((𝐹‘𝐴)𝐶(𝐹‘𝐵))𝐻(𝐹‘𝐵)) = (𝐹‘𝐴)) |
| 12 | | ghomdiv.2 |
. . . . . . 7
⊢ 𝐷 = ( /𝑔
‘𝐺) |
| 13 | 2, 12 | grponpcan 30562 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) |
| 14 | 13 | 3expb 1121 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) |
| 15 | 14 | 3ad2antl1 1186 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) |
| 16 | 15 | fveq2d 6910 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = (𝐹‘𝐴)) |
| 17 | 2, 12 | grpodivcl 30558 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ 𝑋) |
| 18 | 17 | 3expb 1121 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ∈ 𝑋) |
| 19 | | simprr 773 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
| 20 | 18, 19 | jca 511 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐷𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
| 21 | 20 | 3ad2antl1 1186 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐴𝐷𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
| 22 | 2 | ghomlinOLD 37895 |
. . . . 5
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ ((𝐴𝐷𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹‘𝐵)) = (𝐹‘((𝐴𝐷𝐵)𝐺𝐵))) |
| 23 | 22 | eqcomd 2743 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ ((𝐴𝐷𝐵) ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹‘𝐵))) |
| 24 | 21, 23 | syldan 591 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹‘𝐵))) |
| 25 | 11, 16, 24 | 3eqtr2rd 2784 |
. 2
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹‘𝐵)) = (((𝐹‘𝐴)𝐶(𝐹‘𝐵))𝐻(𝐹‘𝐵))) |
| 26 | 18 | 3ad2antl1 1186 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ∈ 𝑋) |
| 27 | 4 | ffvelcdmda 7104 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝐷𝐵) ∈ 𝑋) → (𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻) |
| 28 | 26, 27 | syldan 591 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻) |
| 29 | 3, 9 | grpodivcl 30558 |
. . . 4
⊢ ((𝐻 ∈ GrpOp ∧ (𝐹‘𝐴) ∈ ran 𝐻 ∧ (𝐹‘𝐵) ∈ ran 𝐻) → ((𝐹‘𝐴)𝐶(𝐹‘𝐵)) ∈ ran 𝐻) |
| 30 | 1, 6, 8, 29 | syl3anc 1373 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐹‘𝐴)𝐶(𝐹‘𝐵)) ∈ ran 𝐻) |
| 31 | 3 | grporcan 30537 |
. . 3
⊢ ((𝐻 ∈ GrpOp ∧ ((𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻 ∧ ((𝐹‘𝐴)𝐶(𝐹‘𝐵)) ∈ ran 𝐻 ∧ (𝐹‘𝐵) ∈ ran 𝐻)) → (((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹‘𝐵)) = (((𝐹‘𝐴)𝐶(𝐹‘𝐵))𝐻(𝐹‘𝐵)) ↔ (𝐹‘(𝐴𝐷𝐵)) = ((𝐹‘𝐴)𝐶(𝐹‘𝐵)))) |
| 32 | 1, 28, 30, 8, 31 | syl13anc 1374 |
. 2
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹‘𝐵)) = (((𝐹‘𝐴)𝐶(𝐹‘𝐵))𝐻(𝐹‘𝐵)) ↔ (𝐹‘(𝐴𝐷𝐵)) = ((𝐹‘𝐴)𝐶(𝐹‘𝐵)))) |
| 33 | 25, 32 | mpbid 232 |
1
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐷𝐵)) = ((𝐹‘𝐴)𝐶(𝐹‘𝐵))) |