Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomdiv Structured version   Visualization version   GIF version

Theorem ghomdiv 35977
Description: Group homomorphisms preserve division. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
ghomdiv.1 𝑋 = ran 𝐺
ghomdiv.2 𝐷 = ( /𝑔𝐺)
ghomdiv.3 𝐶 = ( /𝑔𝐻)
Assertion
Ref Expression
ghomdiv (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐷𝐵)) = ((𝐹𝐴)𝐶(𝐹𝐵)))

Proof of Theorem ghomdiv
StepHypRef Expression
1 simpl2 1190 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → 𝐻 ∈ GrpOp)
2 ghomdiv.1 . . . . . . 7 𝑋 = ran 𝐺
3 eqid 2738 . . . . . . 7 ran 𝐻 = ran 𝐻
42, 3ghomf 35975 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:𝑋⟶ran 𝐻)
54ffvelrnda 6943 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ran 𝐻)
65adantrr 713 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐴) ∈ ran 𝐻)
74ffvelrnda 6943 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ 𝐵𝑋) → (𝐹𝐵) ∈ ran 𝐻)
87adantrl 712 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹𝐵) ∈ ran 𝐻)
9 ghomdiv.3 . . . . 5 𝐶 = ( /𝑔𝐻)
103, 9grponpcan 28806 . . . 4 ((𝐻 ∈ GrpOp ∧ (𝐹𝐴) ∈ ran 𝐻 ∧ (𝐹𝐵) ∈ ran 𝐻) → (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)) = (𝐹𝐴))
111, 6, 8, 10syl3anc 1369 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)) = (𝐹𝐴))
12 ghomdiv.2 . . . . . . 7 𝐷 = ( /𝑔𝐺)
132, 12grponpcan 28806 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)
14133expb 1118 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)
15143ad2antl1 1183 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴)
1615fveq2d 6760 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = (𝐹𝐴))
172, 12grpodivcl 28802 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ 𝑋)
18173expb 1118 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ∈ 𝑋)
19 simprr 769 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
2018, 19jca 511 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) ∈ 𝑋𝐵𝑋))
21203ad2antl1 1183 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐴𝐷𝐵) ∈ 𝑋𝐵𝑋))
222ghomlinOLD 35973 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ ((𝐴𝐷𝐵) ∈ 𝑋𝐵𝑋)) → ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)) = (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)))
2322eqcomd 2744 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ ((𝐴𝐷𝐵) ∈ 𝑋𝐵𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)))
2421, 23syldan 590 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘((𝐴𝐷𝐵)𝐺𝐵)) = ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)))
2511, 16, 243eqtr2rd 2785 . 2 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)) = (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)))
26183ad2antl1 1183 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ∈ 𝑋)
274ffvelrnda 6943 . . . 4 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝐷𝐵) ∈ 𝑋) → (𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻)
2826, 27syldan 590 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻)
293, 9grpodivcl 28802 . . . 4 ((𝐻 ∈ GrpOp ∧ (𝐹𝐴) ∈ ran 𝐻 ∧ (𝐹𝐵) ∈ ran 𝐻) → ((𝐹𝐴)𝐶(𝐹𝐵)) ∈ ran 𝐻)
301, 6, 8, 29syl3anc 1369 . . 3 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐹𝐴)𝐶(𝐹𝐵)) ∈ ran 𝐻)
313grporcan 28781 . . 3 ((𝐻 ∈ GrpOp ∧ ((𝐹‘(𝐴𝐷𝐵)) ∈ ran 𝐻 ∧ ((𝐹𝐴)𝐶(𝐹𝐵)) ∈ ran 𝐻 ∧ (𝐹𝐵) ∈ ran 𝐻)) → (((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)) = (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)) ↔ (𝐹‘(𝐴𝐷𝐵)) = ((𝐹𝐴)𝐶(𝐹𝐵))))
321, 28, 30, 8, 31syl13anc 1370 . 2 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (((𝐹‘(𝐴𝐷𝐵))𝐻(𝐹𝐵)) = (((𝐹𝐴)𝐶(𝐹𝐵))𝐻(𝐹𝐵)) ↔ (𝐹‘(𝐴𝐷𝐵)) = ((𝐹𝐴)𝐶(𝐹𝐵))))
3325, 32mpbid 231 1 (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴𝑋𝐵𝑋)) → (𝐹‘(𝐴𝐷𝐵)) = ((𝐹𝐴)𝐶(𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  ran crn 5581  cfv 6418  (class class class)co 7255  GrpOpcgr 28752   /𝑔 cgs 28755   GrpOpHom cghomOLD 35968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ghomOLD 35969
This theorem is referenced by:  grpokerinj  35978  rngohomsub  36058
  Copyright terms: Public domain W3C validator