| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmf | Structured version Visualization version GIF version | ||
| Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmf.x | ⊢ 𝑋 = (Base‘𝑆) |
| ghmf.y | ⊢ 𝑌 = (Base‘𝑇) |
| Ref | Expression |
|---|---|
| ghmf | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmf.x | . . . 4 ⊢ 𝑋 = (Base‘𝑆) | |
| 2 | ghmf.y | . . . 4 ⊢ 𝑌 = (Base‘𝑇) | |
| 3 | eqid 2730 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | eqid 2730 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 5 | 1, 2, 3, 4 | isghm 19154 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥))))) |
| 6 | 5 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥)))) |
| 7 | 6 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Grpcgrp 18872 GrpHom cghm 19151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-ghm 19152 |
| This theorem is referenced by: ghmid 19161 ghminv 19162 ghmsub 19163 ghmmhm 19165 ghmmulg 19167 ghmrn 19168 resghm 19171 ghmpreima 19177 ghmeql 19178 ghmnsgima 19179 ghmnsgpreima 19180 ghmeqker 19182 ghmf1 19185 kerf1ghm 19186 ghmf1o 19187 gimcnv 19206 ghmqusnsglem1 19219 ghmqusnsg 19221 ghmquskerlem1 19222 ghmquskerco 19223 ghmquskerlem3 19225 ghmqusker 19226 lactghmga 19342 frgpup3lem 19714 frgpup3 19715 ghmplusg 19783 isrnghmmul 20358 rnghmf 20364 rhmf 20401 isrhm2d 20403 lmhmf 20948 lmhmpropd 20987 frgpcyg 21490 psgninv 21498 zrhpsgninv 21501 evpmss 21502 psgnevpmb 21503 psgnodpm 21504 zrhpsgnevpm 21507 zrhpsgnodpm 21508 evlslem2 21993 nmoi 24623 nmoix 24624 nmoi2 24625 nmoleub 24626 nmoeq0 24631 nmoco 24632 nmotri 24634 nmods 24639 nghmcn 24640 aks6d1c1p2 42104 aks6d1c1p3 42105 aks6d1c5lem1 42131 |
| Copyright terms: Public domain | W3C validator |