![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmf | Structured version Visualization version GIF version |
Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
ghmf.x | ⊢ 𝑋 = (Base‘𝑆) |
ghmf.y | ⊢ 𝑌 = (Base‘𝑇) |
Ref | Expression |
---|---|
ghmf | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmf.x | . . . 4 ⊢ 𝑋 = (Base‘𝑆) | |
2 | ghmf.y | . . . 4 ⊢ 𝑌 = (Base‘𝑇) | |
3 | eqid 2733 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | eqid 2733 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
5 | 1, 2, 3, 4 | isghm 19092 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥))))) |
6 | 5 | simprbi 498 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥)))) |
7 | 6 | simpld 496 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 Grpcgrp 18819 GrpHom cghm 19089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-ghm 19090 |
This theorem is referenced by: ghmid 19098 ghminv 19099 ghmsub 19100 ghmmhm 19102 ghmmulg 19104 ghmrn 19105 resghm 19108 ghmpreima 19114 ghmeql 19115 ghmnsgima 19116 ghmnsgpreima 19117 ghmeqker 19119 ghmf1 19121 ghmf1o 19122 gimcnv 19141 lactghmga 19273 frgpup3lem 19645 frgpup3 19646 ghmplusg 19714 rhmf 20263 isrhm2d 20265 kerf1ghm 20282 lmhmf 20645 lmhmpropd 20684 frgpcyg 21129 psgninv 21135 zrhpsgninv 21138 evpmss 21139 psgnevpmb 21140 psgnodpm 21141 zrhpsgnevpm 21144 zrhpsgnodpm 21145 evlslem2 21642 nmoi 24245 nmoix 24246 nmoi2 24247 nmoleub 24248 nmoeq0 24253 nmoco 24254 nmotri 24256 nmods 24261 nghmcn 24262 ghmquskerlem1 32528 ghmquskerco 32529 ghmquskerlem3 32531 ghmqusker 32532 isrnghmmul 46691 rnghmf 46697 |
Copyright terms: Public domain | W3C validator |