| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmf | Structured version Visualization version GIF version | ||
| Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmf.x | ⊢ 𝑋 = (Base‘𝑆) |
| ghmf.y | ⊢ 𝑌 = (Base‘𝑇) |
| Ref | Expression |
|---|---|
| ghmf | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmf.x | . . . 4 ⊢ 𝑋 = (Base‘𝑆) | |
| 2 | ghmf.y | . . . 4 ⊢ 𝑌 = (Base‘𝑇) | |
| 3 | eqid 2735 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | eqid 2735 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 5 | 1, 2, 3, 4 | isghm 19198 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥))))) |
| 6 | 5 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥)))) |
| 7 | 6 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Grpcgrp 18916 GrpHom cghm 19195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 df-ghm 19196 |
| This theorem is referenced by: ghmid 19205 ghminv 19206 ghmsub 19207 ghmmhm 19209 ghmmulg 19211 ghmrn 19212 resghm 19215 ghmpreima 19221 ghmeql 19222 ghmnsgima 19223 ghmnsgpreima 19224 ghmeqker 19226 ghmf1 19229 kerf1ghm 19230 ghmf1o 19231 gimcnv 19250 ghmqusnsglem1 19263 ghmqusnsg 19265 ghmquskerlem1 19266 ghmquskerco 19267 ghmquskerlem3 19269 ghmqusker 19270 lactghmga 19386 frgpup3lem 19758 frgpup3 19759 ghmplusg 19827 isrnghmmul 20402 rnghmf 20408 rhmf 20445 isrhm2d 20447 lmhmf 20992 lmhmpropd 21031 frgpcyg 21534 psgninv 21542 zrhpsgninv 21545 evpmss 21546 psgnevpmb 21547 psgnodpm 21548 zrhpsgnevpm 21551 zrhpsgnodpm 21552 evlslem2 22037 nmoi 24667 nmoix 24668 nmoi2 24669 nmoleub 24670 nmoeq0 24675 nmoco 24676 nmotri 24678 nmods 24683 nghmcn 24684 aks6d1c1p2 42122 aks6d1c1p3 42123 aks6d1c5lem1 42149 |
| Copyright terms: Public domain | W3C validator |