MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf Structured version   Visualization version   GIF version

Theorem ghmf 19127
Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmf.x 𝑋 = (Base‘𝑆)
ghmf.y 𝑌 = (Base‘𝑇)
Assertion
Ref Expression
ghmf (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)

Proof of Theorem ghmf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmf.x . . . 4 𝑋 = (Base‘𝑆)
2 ghmf.y . . . 4 𝑌 = (Base‘𝑇)
3 eqid 2731 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2731 . . . 4 (+g𝑇) = (+g𝑇)
51, 2, 3, 4isghm 19122 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝑋𝑥𝑋 (𝐹‘(𝑦(+g𝑆)𝑥)) = ((𝐹𝑦)(+g𝑇)(𝐹𝑥)))))
65simprbi 496 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝑋𝑥𝑋 (𝐹‘(𝑦(+g𝑆)𝑥)) = ((𝐹𝑦)(+g𝑇)(𝐹𝑥))))
76simpld 494 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wf 6472  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  Grpcgrp 18841   GrpHom cghm 19119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-map 8747  df-ghm 19120
This theorem is referenced by:  ghmid  19129  ghminv  19130  ghmsub  19131  ghmmhm  19133  ghmmulg  19135  ghmrn  19136  resghm  19139  ghmpreima  19145  ghmeql  19146  ghmnsgima  19147  ghmnsgpreima  19148  ghmeqker  19150  ghmf1  19153  kerf1ghm  19154  ghmf1o  19155  gimcnv  19174  ghmqusnsglem1  19187  ghmqusnsg  19189  ghmquskerlem1  19190  ghmquskerco  19191  ghmquskerlem3  19193  ghmqusker  19194  lactghmga  19312  frgpup3lem  19684  frgpup3  19685  ghmplusg  19753  isrnghmmul  20355  rnghmf  20361  rhmf  20397  isrhm2d  20399  lmhmf  20963  lmhmpropd  21002  frgpcyg  21505  psgninv  21514  zrhpsgninv  21517  evpmss  21518  psgnevpmb  21519  psgnodpm  21520  zrhpsgnevpm  21523  zrhpsgnodpm  21524  evlslem2  22009  nmoi  24638  nmoix  24639  nmoi2  24640  nmoleub  24641  nmoeq0  24646  nmoco  24647  nmotri  24649  nmods  24654  nghmcn  24655  aks6d1c1p2  42142  aks6d1c1p3  42143  aks6d1c5lem1  42169
  Copyright terms: Public domain W3C validator