MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf Structured version   Visualization version   GIF version

Theorem ghmf 19013
Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmf.x 𝑋 = (Base‘𝑆)
ghmf.y 𝑌 = (Base‘𝑇)
Assertion
Ref Expression
ghmf (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)

Proof of Theorem ghmf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmf.x . . . 4 𝑋 = (Base‘𝑆)
2 ghmf.y . . . 4 𝑌 = (Base‘𝑇)
3 eqid 2737 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2737 . . . 4 (+g𝑇) = (+g𝑇)
51, 2, 3, 4isghm 19009 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝑋𝑥𝑋 (𝐹‘(𝑦(+g𝑆)𝑥)) = ((𝐹𝑦)(+g𝑇)(𝐹𝑥)))))
65simprbi 498 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝑋𝑥𝑋 (𝐹‘(𝑦(+g𝑆)𝑥)) = ((𝐹𝑦)(+g𝑇)(𝐹𝑥))))
76simpld 496 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3065  wf 6493  cfv 6497  (class class class)co 7358  Basecbs 17084  +gcplusg 17134  Grpcgrp 18749   GrpHom cghm 19006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-ghm 19007
This theorem is referenced by:  ghmid  19015  ghminv  19016  ghmsub  19017  ghmmhm  19019  ghmmulg  19021  ghmrn  19022  resghm  19025  ghmpreima  19031  ghmeql  19032  ghmnsgima  19033  ghmnsgpreima  19034  ghmeqker  19036  ghmf1  19038  ghmf1o  19039  gimcnv  19058  lactghmga  19188  frgpup3lem  19560  frgpup3  19561  ghmplusg  19625  rhmf  20159  isrhm2d  20161  kerf1ghm  20178  lmhmf  20498  lmhmpropd  20537  frgpcyg  20983  psgninv  20989  zrhpsgninv  20992  evpmss  20993  psgnevpmb  20994  psgnodpm  20995  zrhpsgnevpm  20998  zrhpsgnodpm  20999  evlslem2  21492  nmoi  24095  nmoix  24096  nmoi2  24097  nmoleub  24098  nmoeq0  24103  nmoco  24104  nmotri  24106  nmods  24111  nghmcn  24112  ghmquskerlem1  32198  ghmquskerco  32199  ghmqusker  32201  isrnghmmul  46198  rnghmf  46204
  Copyright terms: Public domain W3C validator