MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf Structured version   Visualization version   GIF version

Theorem ghmf 19128
Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmf.x 𝑋 = (Base‘𝑆)
ghmf.y 𝑌 = (Base‘𝑇)
Assertion
Ref Expression
ghmf (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)

Proof of Theorem ghmf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmf.x . . . 4 𝑋 = (Base‘𝑆)
2 ghmf.y . . . 4 𝑌 = (Base‘𝑇)
3 eqid 2729 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2729 . . . 4 (+g𝑇) = (+g𝑇)
51, 2, 3, 4isghm 19123 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦𝑋𝑥𝑋 (𝐹‘(𝑦(+g𝑆)𝑥)) = ((𝐹𝑦)(+g𝑇)(𝐹𝑥)))))
65simprbi 496 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋𝑌 ∧ ∀𝑦𝑋𝑥𝑋 (𝐹‘(𝑦(+g𝑆)𝑥)) = ((𝐹𝑦)(+g𝑇)(𝐹𝑥))))
76simpld 494 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Grpcgrp 18841   GrpHom cghm 19120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ghm 19121
This theorem is referenced by:  ghmid  19130  ghminv  19131  ghmsub  19132  ghmmhm  19134  ghmmulg  19136  ghmrn  19137  resghm  19140  ghmpreima  19146  ghmeql  19147  ghmnsgima  19148  ghmnsgpreima  19149  ghmeqker  19151  ghmf1  19154  kerf1ghm  19155  ghmf1o  19156  gimcnv  19175  ghmqusnsglem1  19188  ghmqusnsg  19190  ghmquskerlem1  19191  ghmquskerco  19192  ghmquskerlem3  19194  ghmqusker  19195  lactghmga  19311  frgpup3lem  19683  frgpup3  19684  ghmplusg  19752  isrnghmmul  20327  rnghmf  20333  rhmf  20370  isrhm2d  20372  lmhmf  20917  lmhmpropd  20956  frgpcyg  21459  psgninv  21467  zrhpsgninv  21470  evpmss  21471  psgnevpmb  21472  psgnodpm  21473  zrhpsgnevpm  21476  zrhpsgnodpm  21477  evlslem2  21962  nmoi  24592  nmoix  24593  nmoi2  24594  nmoleub  24595  nmoeq0  24600  nmoco  24601  nmotri  24603  nmods  24608  nghmcn  24609  aks6d1c1p2  42070  aks6d1c1p3  42071  aks6d1c5lem1  42097
  Copyright terms: Public domain W3C validator