![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmf | Structured version Visualization version GIF version |
Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
ghmf.x | ⊢ 𝑋 = (Base‘𝑆) |
ghmf.y | ⊢ 𝑌 = (Base‘𝑇) |
Ref | Expression |
---|---|
ghmf | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmf.x | . . . 4 ⊢ 𝑋 = (Base‘𝑆) | |
2 | ghmf.y | . . . 4 ⊢ 𝑌 = (Base‘𝑇) | |
3 | eqid 2777 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | eqid 2777 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
5 | 1, 2, 3, 4 | isghm 18044 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥))))) |
6 | 5 | simprbi 492 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥)))) |
7 | 6 | simpld 490 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∀wral 3089 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 +gcplusg 16338 Grpcgrp 17809 GrpHom cghm 18041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-ghm 18042 |
This theorem is referenced by: ghmid 18050 ghminv 18051 ghmsub 18052 ghmmhm 18054 ghmmulg 18056 ghmrn 18057 resghm 18060 ghmpreima 18066 ghmeql 18067 ghmnsgima 18068 ghmnsgpreima 18069 ghmeqker 18071 ghmf1 18073 ghmf1o 18074 gimcnv 18093 lactghmga 18207 frgpup3lem 18576 frgpup3 18577 ghmplusg 18635 rhmf 19115 isrhm2d 19117 kerf1ghm 19134 lmhmf 19429 lmhmpropd 19468 evlslem2 19908 frgpcyg 20317 psgninv 20323 zrhpsgninv 20326 evpmss 20327 psgnevpmb 20328 psgnodpm 20329 zrhpsgnevpm 20332 zrhpsgnodpm 20333 nmoi 22940 nmoix 22941 nmoi2 22942 nmoleub 22943 nmoeq0 22948 nmoco 22949 nmotri 22951 nmods 22956 nghmcn 22957 isrnghmmul 42900 rnghmf 42906 |
Copyright terms: Public domain | W3C validator |