| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmf | Structured version Visualization version GIF version | ||
| Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmf.x | ⊢ 𝑋 = (Base‘𝑆) |
| ghmf.y | ⊢ 𝑌 = (Base‘𝑇) |
| Ref | Expression |
|---|---|
| ghmf | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmf.x | . . . 4 ⊢ 𝑋 = (Base‘𝑆) | |
| 2 | ghmf.y | . . . 4 ⊢ 𝑌 = (Base‘𝑇) | |
| 3 | eqid 2729 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | eqid 2729 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 5 | 1, 2, 3, 4 | isghm 19123 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥))))) |
| 6 | 5 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥)))) |
| 7 | 6 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 Grpcgrp 18841 GrpHom cghm 19120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 df-ghm 19121 |
| This theorem is referenced by: ghmid 19130 ghminv 19131 ghmsub 19132 ghmmhm 19134 ghmmulg 19136 ghmrn 19137 resghm 19140 ghmpreima 19146 ghmeql 19147 ghmnsgima 19148 ghmnsgpreima 19149 ghmeqker 19151 ghmf1 19154 kerf1ghm 19155 ghmf1o 19156 gimcnv 19175 ghmqusnsglem1 19188 ghmqusnsg 19190 ghmquskerlem1 19191 ghmquskerco 19192 ghmquskerlem3 19194 ghmqusker 19195 lactghmga 19311 frgpup3lem 19683 frgpup3 19684 ghmplusg 19752 isrnghmmul 20327 rnghmf 20333 rhmf 20370 isrhm2d 20372 lmhmf 20917 lmhmpropd 20956 frgpcyg 21459 psgninv 21467 zrhpsgninv 21470 evpmss 21471 psgnevpmb 21472 psgnodpm 21473 zrhpsgnevpm 21476 zrhpsgnodpm 21477 evlslem2 21962 nmoi 24592 nmoix 24593 nmoi2 24594 nmoleub 24595 nmoeq0 24600 nmoco 24601 nmotri 24603 nmods 24608 nghmcn 24609 aks6d1c1p2 42070 aks6d1c1p3 42071 aks6d1c5lem1 42097 |
| Copyright terms: Public domain | W3C validator |