| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmf | Structured version Visualization version GIF version | ||
| Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmf.x | ⊢ 𝑋 = (Base‘𝑆) |
| ghmf.y | ⊢ 𝑌 = (Base‘𝑇) |
| Ref | Expression |
|---|---|
| ghmf | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmf.x | . . . 4 ⊢ 𝑋 = (Base‘𝑆) | |
| 2 | ghmf.y | . . . 4 ⊢ 𝑌 = (Base‘𝑇) | |
| 3 | eqid 2729 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | eqid 2729 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 5 | 1, 2, 3, 4 | isghm 19094 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥))))) |
| 6 | 5 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥)))) |
| 7 | 6 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 Grpcgrp 18812 GrpHom cghm 19091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 df-ghm 19092 |
| This theorem is referenced by: ghmid 19101 ghminv 19102 ghmsub 19103 ghmmhm 19105 ghmmulg 19107 ghmrn 19108 resghm 19111 ghmpreima 19117 ghmeql 19118 ghmnsgima 19119 ghmnsgpreima 19120 ghmeqker 19122 ghmf1 19125 kerf1ghm 19126 ghmf1o 19127 gimcnv 19146 ghmqusnsglem1 19159 ghmqusnsg 19161 ghmquskerlem1 19162 ghmquskerco 19163 ghmquskerlem3 19165 ghmqusker 19166 lactghmga 19284 frgpup3lem 19656 frgpup3 19657 ghmplusg 19725 isrnghmmul 20327 rnghmf 20333 rhmf 20370 isrhm2d 20372 lmhmf 20938 lmhmpropd 20977 frgpcyg 21480 psgninv 21489 zrhpsgninv 21492 evpmss 21493 psgnevpmb 21494 psgnodpm 21495 zrhpsgnevpm 21498 zrhpsgnodpm 21499 evlslem2 21984 nmoi 24614 nmoix 24615 nmoi2 24616 nmoleub 24617 nmoeq0 24622 nmoco 24623 nmotri 24625 nmods 24630 nghmcn 24631 aks6d1c1p2 42082 aks6d1c1p3 42083 aks6d1c5lem1 42109 |
| Copyright terms: Public domain | W3C validator |