| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gricen | Structured version Visualization version GIF version | ||
| Description: Isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 3-May-2025.) |
| Ref | Expression |
|---|---|
| gricen.b | ⊢ 𝐵 = (Vtx‘𝑅) |
| gricen.c | ⊢ 𝐶 = (Vtx‘𝑆) |
| Ref | Expression |
|---|---|
| gricen | ⊢ (𝑅 ≃𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric 47839 | . 2 ⊢ (𝑅 ≃𝑔𝑟 𝑆 ↔ (𝑅 GraphIso 𝑆) ≠ ∅) | |
| 2 | n0 4333 | . . 3 ⊢ ((𝑅 GraphIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GraphIso 𝑆)) | |
| 3 | gricen.b | . . . . . 6 ⊢ 𝐵 = (Vtx‘𝑅) | |
| 4 | gricen.c | . . . . . 6 ⊢ 𝐶 = (Vtx‘𝑆) | |
| 5 | 3, 4 | grimf1o 47828 | . . . . 5 ⊢ (𝑓 ∈ (𝑅 GraphIso 𝑆) → 𝑓:𝐵–1-1-onto→𝐶) |
| 6 | 3 | fvexi 6900 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 7 | 6 | f1oen 8995 | . . . . 5 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → 𝐵 ≈ 𝐶) |
| 8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GraphIso 𝑆) → 𝐵 ≈ 𝐶) |
| 9 | 8 | exlimiv 1929 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝑅 GraphIso 𝑆) → 𝐵 ≈ 𝐶) |
| 10 | 2, 9 | sylbi 217 | . 2 ⊢ ((𝑅 GraphIso 𝑆) ≠ ∅ → 𝐵 ≈ 𝐶) |
| 11 | 1, 10 | sylbi 217 | 1 ⊢ (𝑅 ≃𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ∅c0 4313 class class class wbr 5123 –1-1-onto→wf1o 6540 ‘cfv 6541 (class class class)co 7413 ≈ cen 8964 Vtxcvtx 28941 GraphIso cgrim 47819 ≃𝑔𝑟 cgric 47820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-1o 8488 df-map 8850 df-en 8968 df-grim 47822 df-gric 47825 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |