| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gricen | Structured version Visualization version GIF version | ||
| Description: Isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 3-May-2025.) |
| Ref | Expression |
|---|---|
| gricen.b | ⊢ 𝐵 = (Vtx‘𝑅) |
| gricen.c | ⊢ 𝐶 = (Vtx‘𝑆) |
| Ref | Expression |
|---|---|
| gricen | ⊢ (𝑅 ≃𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric 47896 | . 2 ⊢ (𝑅 ≃𝑔𝑟 𝑆 ↔ (𝑅 GraphIso 𝑆) ≠ ∅) | |
| 2 | n0 4304 | . . 3 ⊢ ((𝑅 GraphIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GraphIso 𝑆)) | |
| 3 | gricen.b | . . . . . 6 ⊢ 𝐵 = (Vtx‘𝑅) | |
| 4 | gricen.c | . . . . . 6 ⊢ 𝐶 = (Vtx‘𝑆) | |
| 5 | 3, 4 | grimf1o 47868 | . . . . 5 ⊢ (𝑓 ∈ (𝑅 GraphIso 𝑆) → 𝑓:𝐵–1-1-onto→𝐶) |
| 6 | 3 | fvexi 6836 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 7 | 6 | f1oen 8898 | . . . . 5 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → 𝐵 ≈ 𝐶) |
| 8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GraphIso 𝑆) → 𝐵 ≈ 𝐶) |
| 9 | 8 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝑅 GraphIso 𝑆) → 𝐵 ≈ 𝐶) |
| 10 | 2, 9 | sylbi 217 | . 2 ⊢ ((𝑅 GraphIso 𝑆) ≠ ∅ → 𝐵 ≈ 𝐶) |
| 11 | 1, 10 | sylbi 217 | 1 ⊢ (𝑅 ≃𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 class class class wbr 5092 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 ≈ cen 8869 Vtxcvtx 28941 GraphIso cgrim 47859 ≃𝑔𝑟 cgric 47860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-1o 8388 df-map 8755 df-en 8873 df-grim 47862 df-gric 47865 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |