Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opstrgric Structured version   Visualization version   GIF version

Theorem opstrgric 48036
Description: A graph represented as an extensible structure with vertices as base set and indexed edges is isomorphic to a hypergraph represented as ordered pair with the same vertices and edges. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 4-May-2025.)
Hypotheses
Ref Expression
opstrgric.g 𝐺 = ⟨𝑉, 𝐸
opstrgric.h 𝐻 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}
Assertion
Ref Expression
opstrgric ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → 𝐺𝑔𝑟 𝐻)

Proof of Theorem opstrgric
StepHypRef Expression
1 simp1 1136 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → 𝐺 ∈ UHGraph)
2 opstrgric.h . . . 4 𝐻 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}
3 prex 5373 . . . 4 {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ∈ V
42, 3eqeltri 2827 . . 3 𝐻 ∈ V
54a1i 11 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → 𝐻 ∈ V)
6 opvtxfv 28982 . . . 4 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
763adant1 1130 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
8 opstrgric.g . . . . 5 𝐺 = ⟨𝑉, 𝐸
98fveq2i 6825 . . . 4 (Vtx‘𝐺) = (Vtx‘⟨𝑉, 𝐸⟩)
109a1i 11 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (Vtx‘𝐺) = (Vtx‘⟨𝑉, 𝐸⟩))
112struct2grvtx 29005 . . . 4 ((𝑉𝑋𝐸𝑌) → (Vtx‘𝐻) = 𝑉)
12113adant1 1130 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (Vtx‘𝐻) = 𝑉)
137, 10, 123eqtr4d 2776 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (Vtx‘𝐺) = (Vtx‘𝐻))
14 opiedgfv 28985 . . . 4 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
15143adant1 1130 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
168fveq2i 6825 . . . 4 (iEdg‘𝐺) = (iEdg‘⟨𝑉, 𝐸⟩)
1716a1i 11 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (iEdg‘𝐺) = (iEdg‘⟨𝑉, 𝐸⟩))
182struct2griedg 29006 . . . 4 ((𝑉𝑋𝐸𝑌) → (iEdg‘𝐻) = 𝐸)
19183adant1 1130 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (iEdg‘𝐻) = 𝐸)
2015, 17, 193eqtr4d 2776 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (iEdg‘𝐺) = (iEdg‘𝐻))
21 simpl 482 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) → 𝐺 ∈ UHGraph)
2221adantr 480 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐺 ∈ UHGraph)
23 simpr 484 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) → 𝐻 ∈ V)
2423adantr 480 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐻 ∈ V)
25 simpl 482 . . . . 5 (((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) → (Vtx‘𝐺) = (Vtx‘𝐻))
2625adantl 481 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → (Vtx‘𝐺) = (Vtx‘𝐻))
27 simpr 484 . . . . 5 (((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) → (iEdg‘𝐺) = (iEdg‘𝐻))
2827adantl 481 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → (iEdg‘𝐺) = (iEdg‘𝐻))
2922, 24, 26, 28grimidvtxedg 47995 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻))
30 brgrici 48023 . . 3 (( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻) → 𝐺𝑔𝑟 𝐻)
3129, 30syl 17 . 2 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐺𝑔𝑟 𝐻)
321, 5, 13, 20, 31syl22anc 838 1 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → 𝐺𝑔𝑟 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  {cpr 4575  cop 4579   class class class wbr 5089   I cid 5508  cres 5616  cfv 6481  (class class class)co 7346  ndxcnx 17104  Basecbs 17120  .efcedgf 28966  Vtxcvtx 28974  iEdgciedg 28975  UHGraphcuhgr 29034   GraphIso cgrim 47985  𝑔𝑟 cgric 47986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-hash 14238  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-edgf 28967  df-vtx 28976  df-iedg 28977  df-uhgr 29036  df-grim 47988  df-gric 47991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator