![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opstrgric | Structured version Visualization version GIF version |
Description: A graph represented as an extensible structure with vertices as base set and indexed edges is isomorphic to a hypergraph represented as ordered pair with the same vertices and edges. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 4-May-2025.) |
Ref | Expression |
---|---|
opstrgric.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
opstrgric.h | ⊢ 𝐻 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} |
Ref | Expression |
---|---|
opstrgric | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 ≃𝑔𝑟 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 ∈ UHGraph) | |
2 | opstrgric.h | . . . 4 ⊢ 𝐻 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} | |
3 | prex 5443 | . . . 4 ⊢ {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ∈ V | |
4 | 2, 3 | eqeltri 2835 | . . 3 ⊢ 𝐻 ∈ V |
5 | 4 | a1i 11 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐻 ∈ V) |
6 | opvtxfv 29036 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
7 | 6 | 3adant1 1129 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
8 | opstrgric.g | . . . . 5 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
9 | 8 | fveq2i 6910 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘〈𝑉, 𝐸〉) |
10 | 9 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐺) = (Vtx‘〈𝑉, 𝐸〉)) |
11 | 2 | struct2grvtx 29059 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐻) = 𝑉) |
12 | 11 | 3adant1 1129 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐻) = 𝑉) |
13 | 7, 10, 12 | 3eqtr4d 2785 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐺) = (Vtx‘𝐻)) |
14 | opiedgfv 29039 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
15 | 14 | 3adant1 1129 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
16 | 8 | fveq2i 6910 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘〈𝑉, 𝐸〉) |
17 | 16 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐺) = (iEdg‘〈𝑉, 𝐸〉)) |
18 | 2 | struct2griedg 29060 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐻) = 𝐸) |
19 | 18 | 3adant1 1129 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐻) = 𝐸) |
20 | 15, 17, 19 | 3eqtr4d 2785 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐺) = (iEdg‘𝐻)) |
21 | simpl 482 | . . . . 5 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) → 𝐺 ∈ UHGraph) | |
22 | 21 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐺 ∈ UHGraph) |
23 | simpr 484 | . . . . 5 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) → 𝐻 ∈ V) | |
24 | 23 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐻 ∈ V) |
25 | simpl 482 | . . . . 5 ⊢ (((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) → (Vtx‘𝐺) = (Vtx‘𝐻)) | |
26 | 25 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → (Vtx‘𝐺) = (Vtx‘𝐻)) |
27 | simpr 484 | . . . . 5 ⊢ (((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) → (iEdg‘𝐺) = (iEdg‘𝐻)) | |
28 | 27 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → (iEdg‘𝐺) = (iEdg‘𝐻)) |
29 | 22, 24, 26, 28 | grimidvtxedg 47814 | . . 3 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻)) |
30 | brgrici 47820 | . . 3 ⊢ (( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻) → 𝐺 ≃𝑔𝑟 𝐻) | |
31 | 29, 30 | syl 17 | . 2 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐺 ≃𝑔𝑟 𝐻) |
32 | 1, 5, 13, 20, 31 | syl22anc 839 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 ≃𝑔𝑟 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 Vcvv 3478 {cpr 4633 〈cop 4637 class class class wbr 5148 I cid 5582 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 ndxcnx 17227 Basecbs 17245 .efcedgf 29018 Vtxcvtx 29028 iEdgciedg 29029 UHGraphcuhgr 29088 GraphIso cgrim 47799 ≃𝑔𝑟 cgric 47800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-xnn0 12598 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-hash 14367 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-edgf 29019 df-vtx 29030 df-iedg 29031 df-uhgr 29090 df-grim 47802 df-gric 47805 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |