Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opstrgric Structured version   Visualization version   GIF version

Theorem opstrgric 47939
Description: A graph represented as an extensible structure with vertices as base set and indexed edges is isomorphic to a hypergraph represented as ordered pair with the same vertices and edges. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 4-May-2025.)
Hypotheses
Ref Expression
opstrgric.g 𝐺 = ⟨𝑉, 𝐸
opstrgric.h 𝐻 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}
Assertion
Ref Expression
opstrgric ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → 𝐺𝑔𝑟 𝐻)

Proof of Theorem opstrgric
StepHypRef Expression
1 simp1 1136 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → 𝐺 ∈ UHGraph)
2 opstrgric.h . . . 4 𝐻 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}
3 prex 5407 . . . 4 {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩} ∈ V
42, 3eqeltri 2830 . . 3 𝐻 ∈ V
54a1i 11 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → 𝐻 ∈ V)
6 opvtxfv 28983 . . . 4 ((𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
763adant1 1130 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
8 opstrgric.g . . . . 5 𝐺 = ⟨𝑉, 𝐸
98fveq2i 6879 . . . 4 (Vtx‘𝐺) = (Vtx‘⟨𝑉, 𝐸⟩)
109a1i 11 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (Vtx‘𝐺) = (Vtx‘⟨𝑉, 𝐸⟩))
112struct2grvtx 29006 . . . 4 ((𝑉𝑋𝐸𝑌) → (Vtx‘𝐻) = 𝑉)
12113adant1 1130 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (Vtx‘𝐻) = 𝑉)
137, 10, 123eqtr4d 2780 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (Vtx‘𝐺) = (Vtx‘𝐻))
14 opiedgfv 28986 . . . 4 ((𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
15143adant1 1130 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
168fveq2i 6879 . . . 4 (iEdg‘𝐺) = (iEdg‘⟨𝑉, 𝐸⟩)
1716a1i 11 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (iEdg‘𝐺) = (iEdg‘⟨𝑉, 𝐸⟩))
182struct2griedg 29007 . . . 4 ((𝑉𝑋𝐸𝑌) → (iEdg‘𝐻) = 𝐸)
19183adant1 1130 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (iEdg‘𝐻) = 𝐸)
2015, 17, 193eqtr4d 2780 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → (iEdg‘𝐺) = (iEdg‘𝐻))
21 simpl 482 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) → 𝐺 ∈ UHGraph)
2221adantr 480 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐺 ∈ UHGraph)
23 simpr 484 . . . . 5 ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) → 𝐻 ∈ V)
2423adantr 480 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐻 ∈ V)
25 simpl 482 . . . . 5 (((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) → (Vtx‘𝐺) = (Vtx‘𝐻))
2625adantl 481 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → (Vtx‘𝐺) = (Vtx‘𝐻))
27 simpr 484 . . . . 5 (((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) → (iEdg‘𝐺) = (iEdg‘𝐻))
2827adantl 481 . . . 4 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → (iEdg‘𝐺) = (iEdg‘𝐻))
2922, 24, 26, 28grimidvtxedg 47898 . . 3 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻))
30 brgrici 47926 . . 3 (( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻) → 𝐺𝑔𝑟 𝐻)
3129, 30syl 17 . 2 (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐺𝑔𝑟 𝐻)
321, 5, 13, 20, 31syl22anc 838 1 ((𝐺 ∈ UHGraph ∧ 𝑉𝑋𝐸𝑌) → 𝐺𝑔𝑟 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  {cpr 4603  cop 4607   class class class wbr 5119   I cid 5547  cres 5656  cfv 6531  (class class class)co 7405  ndxcnx 17212  Basecbs 17228  .efcedgf 28967  Vtxcvtx 28975  iEdgciedg 28976  UHGraphcuhgr 29035   GraphIso cgrim 47888  𝑔𝑟 cgric 47889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-hash 14349  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-edgf 28968  df-vtx 28977  df-iedg 28978  df-uhgr 29037  df-grim 47891  df-gric 47894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator