| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opstrgric | Structured version Visualization version GIF version | ||
| Description: A graph represented as an extensible structure with vertices as base set and indexed edges is isomorphic to a hypergraph represented as ordered pair with the same vertices and edges. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 4-May-2025.) |
| Ref | Expression |
|---|---|
| opstrgric.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| opstrgric.h | ⊢ 𝐻 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} |
| Ref | Expression |
|---|---|
| opstrgric | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 ≃𝑔𝑟 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 ∈ UHGraph) | |
| 2 | opstrgric.h | . . . 4 ⊢ 𝐻 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} | |
| 3 | prex 5387 | . . . 4 ⊢ {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉} ∈ V | |
| 4 | 2, 3 | eqeltri 2824 | . . 3 ⊢ 𝐻 ∈ V |
| 5 | 4 | a1i 11 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐻 ∈ V) |
| 6 | opvtxfv 28984 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
| 7 | 6 | 3adant1 1130 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
| 8 | opstrgric.g | . . . . 5 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 9 | 8 | fveq2i 6843 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘〈𝑉, 𝐸〉) |
| 10 | 9 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐺) = (Vtx‘〈𝑉, 𝐸〉)) |
| 11 | 2 | struct2grvtx 29007 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐻) = 𝑉) |
| 12 | 11 | 3adant1 1130 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐻) = 𝑉) |
| 13 | 7, 10, 12 | 3eqtr4d 2774 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘𝐺) = (Vtx‘𝐻)) |
| 14 | opiedgfv 28987 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
| 15 | 14 | 3adant1 1130 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) |
| 16 | 8 | fveq2i 6843 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘〈𝑉, 𝐸〉) |
| 17 | 16 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐺) = (iEdg‘〈𝑉, 𝐸〉)) |
| 18 | 2 | struct2griedg 29008 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐻) = 𝐸) |
| 19 | 18 | 3adant1 1130 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐻) = 𝐸) |
| 20 | 15, 17, 19 | 3eqtr4d 2774 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (iEdg‘𝐺) = (iEdg‘𝐻)) |
| 21 | simpl 482 | . . . . 5 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) → 𝐺 ∈ UHGraph) | |
| 22 | 21 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐺 ∈ UHGraph) |
| 23 | simpr 484 | . . . . 5 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) → 𝐻 ∈ V) | |
| 24 | 23 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐻 ∈ V) |
| 25 | simpl 482 | . . . . 5 ⊢ (((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) → (Vtx‘𝐺) = (Vtx‘𝐻)) | |
| 26 | 25 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → (Vtx‘𝐺) = (Vtx‘𝐻)) |
| 27 | simpr 484 | . . . . 5 ⊢ (((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) → (iEdg‘𝐺) = (iEdg‘𝐻)) | |
| 28 | 27 | adantl 481 | . . . 4 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → (iEdg‘𝐺) = (iEdg‘𝐻)) |
| 29 | 22, 24, 26, 28 | grimidvtxedg 47878 | . . 3 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → ( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻)) |
| 30 | brgrici 47906 | . . 3 ⊢ (( I ↾ (Vtx‘𝐺)) ∈ (𝐺 GraphIso 𝐻) → 𝐺 ≃𝑔𝑟 𝐻) | |
| 31 | 29, 30 | syl 17 | . 2 ⊢ (((𝐺 ∈ UHGraph ∧ 𝐻 ∈ V) ∧ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))) → 𝐺 ≃𝑔𝑟 𝐻) |
| 32 | 1, 5, 13, 20, 31 | syl22anc 838 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 𝐺 ≃𝑔𝑟 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {cpr 4587 〈cop 4591 class class class wbr 5102 I cid 5525 ↾ cres 5633 ‘cfv 6499 (class class class)co 7369 ndxcnx 17139 Basecbs 17155 .efcedgf 28968 Vtxcvtx 28976 iEdgciedg 28977 UHGraphcuhgr 29036 GraphIso cgrim 47868 ≃𝑔𝑟 cgric 47869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-hash 14272 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-edgf 28969 df-vtx 28978 df-iedg 28979 df-uhgr 29038 df-grim 47871 df-gric 47874 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |