Proof of Theorem upgrimwlklem5
| Step | Hyp | Ref
| Expression |
| 1 | | upgrimwlk.i |
. . . . . 6
⊢ 𝐼 = (iEdg‘𝐺) |
| 2 | | upgrimwlk.j |
. . . . . 6
⊢ 𝐽 = (iEdg‘𝐻) |
| 3 | | upgrimwlk.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ USPGraph) |
| 4 | | upgrimwlk.h |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ USPGraph) |
| 5 | | upgrimwlk.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (𝐺 GraphIso 𝐻)) |
| 6 | | upgrimwlk.e |
. . . . . 6
⊢ 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (◡𝐽‘(𝑁 “ (𝐼‘(𝐹‘𝑥))))) |
| 7 | | upgrimwlk.w |
. . . . . . 7
⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| 8 | 1 | wlkf 29540 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 9 | 7, 8 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | upgrimwlklem1 47858 |
. . . . 5
⊢ (𝜑 → (♯‘𝐸) = (♯‘𝐹)) |
| 11 | 10 | oveq2d 7419 |
. . . 4
⊢ (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐹))) |
| 12 | 11 | eleq2d 2820 |
. . 3
⊢ (𝜑 → (𝑖 ∈ (0..^(♯‘𝐸)) ↔ 𝑖 ∈ (0..^(♯‘𝐹)))) |
| 13 | | uspgrupgr 29103 |
. . . . . 6
⊢ (𝐺 ∈ USPGraph → 𝐺 ∈
UPGraph) |
| 14 | 3, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ UPGraph) |
| 15 | 1 | upgrwlkedg 29568 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
| 16 | 14, 7, 15 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))}) |
| 17 | | 2fveq3 6880 |
. . . . . . . . 9
⊢ (𝑥 = 𝑖 → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘𝑖))) |
| 18 | | fveq2 6875 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑖 → (𝑃‘𝑥) = (𝑃‘𝑖)) |
| 19 | | fvoveq1 7426 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑖 → (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑖 + 1))) |
| 20 | 18, 19 | preq12d 4717 |
. . . . . . . . 9
⊢ (𝑥 = 𝑖 → {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) |
| 21 | 17, 20 | eqeq12d 2751 |
. . . . . . . 8
⊢ (𝑥 = 𝑖 → ((𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} ↔ (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
| 22 | 21 | rspcv 3597 |
. . . . . . 7
⊢ (𝑖 ∈
(0..^(♯‘𝐹))
→ (∀𝑥 ∈
(0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} → (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
| 23 | 22 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (∀𝑥 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} → (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
| 24 | | imaeq2 6043 |
. . . . . . . 8
⊢ ((𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} → (𝑁 “ (𝐼‘(𝐹‘𝑖))) = (𝑁 “ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))})) |
| 25 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 26 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
| 27 | 25, 26 | grimf1o 47845 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ (𝐺 GraphIso 𝐻) → 𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) |
| 28 | | f1ofn 6818 |
. . . . . . . . . . . 12
⊢ (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑁 Fn (Vtx‘𝐺)) |
| 29 | 5, 27, 28 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 Fn (Vtx‘𝐺)) |
| 30 | 29 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → 𝑁 Fn (Vtx‘𝐺)) |
| 31 | 25 | wlkp 29542 |
. . . . . . . . . . . . 13
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 32 | 7, 31 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 33 | 32 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 34 | | elfzofz 13690 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈
(0..^(♯‘𝐹))
→ 𝑖 ∈
(0...(♯‘𝐹))) |
| 35 | 34 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0...(♯‘𝐹))) |
| 36 | 33, 35 | ffvelcdmd 7074 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝑃‘𝑖) ∈ (Vtx‘𝐺)) |
| 37 | | fzofzp1 13778 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈
(0..^(♯‘𝐹))
→ (𝑖 + 1) ∈
(0...(♯‘𝐹))) |
| 38 | 37 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ (0...(♯‘𝐹))) |
| 39 | 33, 38 | ffvelcdmd 7074 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝑃‘(𝑖 + 1)) ∈ (Vtx‘𝐺)) |
| 40 | | fnimapr 6961 |
. . . . . . . . . 10
⊢ ((𝑁 Fn (Vtx‘𝐺) ∧ (𝑃‘𝑖) ∈ (Vtx‘𝐺) ∧ (𝑃‘(𝑖 + 1)) ∈ (Vtx‘𝐺)) → (𝑁 “ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) = {(𝑁‘(𝑃‘𝑖)), (𝑁‘(𝑃‘(𝑖 + 1)))}) |
| 41 | 30, 36, 39, 40 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝑁 “ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) = {(𝑁‘(𝑃‘𝑖)), (𝑁‘(𝑃‘(𝑖 + 1)))}) |
| 42 | 7 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → 𝐹(Walks‘𝐺)𝑃) |
| 43 | 42, 31 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
| 44 | 43, 35 | fvco3d 6978 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((𝑁 ∘ 𝑃)‘𝑖) = (𝑁‘(𝑃‘𝑖))) |
| 45 | 33, 38 | fvco3d 6978 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((𝑁 ∘ 𝑃)‘(𝑖 + 1)) = (𝑁‘(𝑃‘(𝑖 + 1)))) |
| 46 | 44, 45 | preq12d 4717 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → {((𝑁 ∘ 𝑃)‘𝑖), ((𝑁 ∘ 𝑃)‘(𝑖 + 1))} = {(𝑁‘(𝑃‘𝑖)), (𝑁‘(𝑃‘(𝑖 + 1)))}) |
| 47 | 41, 46 | eqtr4d 2773 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝑁 “ {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) = {((𝑁 ∘ 𝑃)‘𝑖), ((𝑁 ∘ 𝑃)‘(𝑖 + 1))}) |
| 48 | 24, 47 | sylan9eqr 2792 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))}) → (𝑁 “ (𝐼‘(𝐹‘𝑖))) = {((𝑁 ∘ 𝑃)‘𝑖), ((𝑁 ∘ 𝑃)‘(𝑖 + 1))}) |
| 49 | 48 | ex 412 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((𝐼‘(𝐹‘𝑖)) = {(𝑃‘𝑖), (𝑃‘(𝑖 + 1))} → (𝑁 “ (𝐼‘(𝐹‘𝑖))) = {((𝑁 ∘ 𝑃)‘𝑖), ((𝑁 ∘ 𝑃)‘(𝑖 + 1))})) |
| 50 | 23, 49 | syld 47 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (∀𝑥 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} → (𝑁 “ (𝐼‘(𝐹‘𝑖))) = {((𝑁 ∘ 𝑃)‘𝑖), ((𝑁 ∘ 𝑃)‘(𝑖 + 1))})) |
| 51 | 50 | ex 412 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ (0..^(♯‘𝐹)) → (∀𝑥 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑥)) = {(𝑃‘𝑥), (𝑃‘(𝑥 + 1))} → (𝑁 “ (𝐼‘(𝐹‘𝑖))) = {((𝑁 ∘ 𝑃)‘𝑖), ((𝑁 ∘ 𝑃)‘(𝑖 + 1))}))) |
| 52 | 16, 51 | mpid 44 |
. . 3
⊢ (𝜑 → (𝑖 ∈ (0..^(♯‘𝐹)) → (𝑁 “ (𝐼‘(𝐹‘𝑖))) = {((𝑁 ∘ 𝑃)‘𝑖), ((𝑁 ∘ 𝑃)‘(𝑖 + 1))})) |
| 53 | 12, 52 | sylbid 240 |
. 2
⊢ (𝜑 → (𝑖 ∈ (0..^(♯‘𝐸)) → (𝑁 “ (𝐼‘(𝐹‘𝑖))) = {((𝑁 ∘ 𝑃)‘𝑖), ((𝑁 ∘ 𝑃)‘(𝑖 + 1))})) |
| 54 | 53 | imp 406 |
1
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^(♯‘𝐸))) → (𝑁 “ (𝐼‘(𝐹‘𝑖))) = {((𝑁 ∘ 𝑃)‘𝑖), ((𝑁 ∘ 𝑃)‘(𝑖 + 1))}) |