Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrimwlklem5 Structured version   Visualization version   GIF version

Theorem upgrimwlklem5 47862
Description: Lemma 5 for upgrimwlk 47863. (Contributed by AV, 28-Oct-2025.)
Hypotheses
Ref Expression
upgrimwlk.i 𝐼 = (iEdg‘𝐺)
upgrimwlk.j 𝐽 = (iEdg‘𝐻)
upgrimwlk.g (𝜑𝐺 ∈ USPGraph)
upgrimwlk.h (𝜑𝐻 ∈ USPGraph)
upgrimwlk.n (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
upgrimwlk.e 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
upgrimwlk.w (𝜑𝐹(Walks‘𝐺)𝑃)
Assertion
Ref Expression
upgrimwlklem5 ((𝜑𝑖 ∈ (0..^(♯‘𝐸))) → (𝑁 “ (𝐼‘(𝐹𝑖))) = {((𝑁𝑃)‘𝑖), ((𝑁𝑃)‘(𝑖 + 1))})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝐼   𝑥,𝐽   𝑥,𝑃   𝜑,𝑥,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝐸(𝑥,𝑖)   𝐹(𝑖)   𝐺(𝑖)   𝐻(𝑥,𝑖)   𝐼(𝑖)   𝐽(𝑖)   𝑁(𝑥,𝑖)

Proof of Theorem upgrimwlklem5
StepHypRef Expression
1 upgrimwlk.i . . . . . 6 𝐼 = (iEdg‘𝐺)
2 upgrimwlk.j . . . . . 6 𝐽 = (iEdg‘𝐻)
3 upgrimwlk.g . . . . . 6 (𝜑𝐺 ∈ USPGraph)
4 upgrimwlk.h . . . . . 6 (𝜑𝐻 ∈ USPGraph)
5 upgrimwlk.n . . . . . 6 (𝜑𝑁 ∈ (𝐺 GraphIso 𝐻))
6 upgrimwlk.e . . . . . 6 𝐸 = (𝑥 ∈ dom 𝐹 ↦ (𝐽‘(𝑁 “ (𝐼‘(𝐹𝑥)))))
7 upgrimwlk.w . . . . . . 7 (𝜑𝐹(Walks‘𝐺)𝑃)
81wlkf 29540 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
97, 8syl 17 . . . . . 6 (𝜑𝐹 ∈ Word dom 𝐼)
101, 2, 3, 4, 5, 6, 9upgrimwlklem1 47858 . . . . 5 (𝜑 → (♯‘𝐸) = (♯‘𝐹))
1110oveq2d 7419 . . . 4 (𝜑 → (0..^(♯‘𝐸)) = (0..^(♯‘𝐹)))
1211eleq2d 2820 . . 3 (𝜑 → (𝑖 ∈ (0..^(♯‘𝐸)) ↔ 𝑖 ∈ (0..^(♯‘𝐹))))
13 uspgrupgr 29103 . . . . . 6 (𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph)
143, 13syl 17 . . . . 5 (𝜑𝐺 ∈ UPGraph)
151upgrwlkedg 29568 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))})
1614, 7, 15syl2anc 584 . . . 4 (𝜑 → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))})
17 2fveq3 6880 . . . . . . . . 9 (𝑥 = 𝑖 → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹𝑖)))
18 fveq2 6875 . . . . . . . . . 10 (𝑥 = 𝑖 → (𝑃𝑥) = (𝑃𝑖))
19 fvoveq1 7426 . . . . . . . . . 10 (𝑥 = 𝑖 → (𝑃‘(𝑥 + 1)) = (𝑃‘(𝑖 + 1)))
2018, 19preq12d 4717 . . . . . . . . 9 (𝑥 = 𝑖 → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑃𝑖), (𝑃‘(𝑖 + 1))})
2117, 20eqeq12d 2751 . . . . . . . 8 (𝑥 = 𝑖 → ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ↔ (𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2221rspcv 3597 . . . . . . 7 (𝑖 ∈ (0..^(♯‘𝐹)) → (∀𝑥 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} → (𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
2322adantl 481 . . . . . 6 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → (∀𝑥 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} → (𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
24 imaeq2 6043 . . . . . . . 8 ((𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → (𝑁 “ (𝐼‘(𝐹𝑖))) = (𝑁 “ {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
25 eqid 2735 . . . . . . . . . . . . 13 (Vtx‘𝐺) = (Vtx‘𝐺)
26 eqid 2735 . . . . . . . . . . . . 13 (Vtx‘𝐻) = (Vtx‘𝐻)
2725, 26grimf1o 47845 . . . . . . . . . . . 12 (𝑁 ∈ (𝐺 GraphIso 𝐻) → 𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻))
28 f1ofn 6818 . . . . . . . . . . . 12 (𝑁:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝑁 Fn (Vtx‘𝐺))
295, 27, 283syl 18 . . . . . . . . . . 11 (𝜑𝑁 Fn (Vtx‘𝐺))
3029adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → 𝑁 Fn (Vtx‘𝐺))
3125wlkp 29542 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
327, 31syl 17 . . . . . . . . . . . 12 (𝜑𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
3332adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
34 elfzofz 13690 . . . . . . . . . . . 12 (𝑖 ∈ (0..^(♯‘𝐹)) → 𝑖 ∈ (0...(♯‘𝐹)))
3534adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → 𝑖 ∈ (0...(♯‘𝐹)))
3633, 35ffvelcdmd 7074 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → (𝑃𝑖) ∈ (Vtx‘𝐺))
37 fzofzp1 13778 . . . . . . . . . . . 12 (𝑖 ∈ (0..^(♯‘𝐹)) → (𝑖 + 1) ∈ (0...(♯‘𝐹)))
3837adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → (𝑖 + 1) ∈ (0...(♯‘𝐹)))
3933, 38ffvelcdmd 7074 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → (𝑃‘(𝑖 + 1)) ∈ (Vtx‘𝐺))
40 fnimapr 6961 . . . . . . . . . 10 ((𝑁 Fn (Vtx‘𝐺) ∧ (𝑃𝑖) ∈ (Vtx‘𝐺) ∧ (𝑃‘(𝑖 + 1)) ∈ (Vtx‘𝐺)) → (𝑁 “ {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) = {(𝑁‘(𝑃𝑖)), (𝑁‘(𝑃‘(𝑖 + 1)))})
4130, 36, 39, 40syl3anc 1373 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → (𝑁 “ {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) = {(𝑁‘(𝑃𝑖)), (𝑁‘(𝑃‘(𝑖 + 1)))})
427adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → 𝐹(Walks‘𝐺)𝑃)
4342, 31syl 17 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
4443, 35fvco3d 6978 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → ((𝑁𝑃)‘𝑖) = (𝑁‘(𝑃𝑖)))
4533, 38fvco3d 6978 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → ((𝑁𝑃)‘(𝑖 + 1)) = (𝑁‘(𝑃‘(𝑖 + 1))))
4644, 45preq12d 4717 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → {((𝑁𝑃)‘𝑖), ((𝑁𝑃)‘(𝑖 + 1))} = {(𝑁‘(𝑃𝑖)), (𝑁‘(𝑃‘(𝑖 + 1)))})
4741, 46eqtr4d 2773 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → (𝑁 “ {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) = {((𝑁𝑃)‘𝑖), ((𝑁𝑃)‘(𝑖 + 1))})
4824, 47sylan9eqr 2792 . . . . . . 7 (((𝜑𝑖 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}) → (𝑁 “ (𝐼‘(𝐹𝑖))) = {((𝑁𝑃)‘𝑖), ((𝑁𝑃)‘(𝑖 + 1))})
4948ex 412 . . . . . 6 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → ((𝐼‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → (𝑁 “ (𝐼‘(𝐹𝑖))) = {((𝑁𝑃)‘𝑖), ((𝑁𝑃)‘(𝑖 + 1))}))
5023, 49syld 47 . . . . 5 ((𝜑𝑖 ∈ (0..^(♯‘𝐹))) → (∀𝑥 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} → (𝑁 “ (𝐼‘(𝐹𝑖))) = {((𝑁𝑃)‘𝑖), ((𝑁𝑃)‘(𝑖 + 1))}))
5150ex 412 . . . 4 (𝜑 → (𝑖 ∈ (0..^(♯‘𝐹)) → (∀𝑥 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑥)) = {(𝑃𝑥), (𝑃‘(𝑥 + 1))} → (𝑁 “ (𝐼‘(𝐹𝑖))) = {((𝑁𝑃)‘𝑖), ((𝑁𝑃)‘(𝑖 + 1))})))
5216, 51mpid 44 . . 3 (𝜑 → (𝑖 ∈ (0..^(♯‘𝐹)) → (𝑁 “ (𝐼‘(𝐹𝑖))) = {((𝑁𝑃)‘𝑖), ((𝑁𝑃)‘(𝑖 + 1))}))
5312, 52sylbid 240 . 2 (𝜑 → (𝑖 ∈ (0..^(♯‘𝐸)) → (𝑁 “ (𝐼‘(𝐹𝑖))) = {((𝑁𝑃)‘𝑖), ((𝑁𝑃)‘(𝑖 + 1))}))
5453imp 406 1 ((𝜑𝑖 ∈ (0..^(♯‘𝐸))) → (𝑁 “ (𝐼‘(𝐹𝑖))) = {((𝑁𝑃)‘𝑖), ((𝑁𝑃)‘(𝑖 + 1))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  {cpr 4603   class class class wbr 5119  cmpt 5201  ccnv 5653  dom cdm 5654  cima 5657  ccom 5658   Fn wfn 6525  wf 6526  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  0cc0 11127  1c1 11128   + caddc 11130  ...cfz 13522  ..^cfzo 13669  chash 14346  Word cword 14529  Vtxcvtx 28921  iEdgciedg 28922  UPGraphcupgr 29005  USPGraphcuspgr 29073  Walkscwlks 29522   GraphIso cgrim 47836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-n0 12500  df-xnn0 12573  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-hash 14347  df-word 14530  df-edg 28973  df-uhgr 28983  df-upgr 29007  df-uspgr 29075  df-wlks 29525  df-grim 47839
This theorem is referenced by:  upgrimwlk  47863
  Copyright terms: Public domain W3C validator