Step | Hyp | Ref
| Expression |
1 | | grimgrtri.t |
. . . 4
⊢ (𝜑 → 𝑇 ∈ (GrTriangles‘𝐺)) |
2 | | eqid 2740 |
. . . . 5
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
3 | | eqid 2740 |
. . . . 5
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
4 | 2, 3 | grtriprop 47792 |
. . . 4
⊢ (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
5 | 1, 4 | syl 17 |
. . 3
⊢ (𝜑 → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) |
6 | | grimgrtri.n |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (𝐺 GraphIso 𝐻)) |
7 | | eqid 2740 |
. . . . . . . . . 10
⊢
(Vtx‘𝐻) =
(Vtx‘𝐻) |
8 | 2, 7 | grimf1o 47754 |
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → 𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻)) |
9 | | f1of1 6861 |
. . . . . . . . 9
⊢ (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻)) |
10 | 6, 8, 9 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻)) |
11 | 10 | ad3antrrr 729 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → 𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻)) |
12 | | simplrl 776 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) ∧ 𝑐 ∈ (Vtx‘𝐺)) → 𝑎 ∈ (Vtx‘𝐺)) |
13 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → 𝑎 ∈ (Vtx‘𝐺)) |
14 | | simprr 772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) → 𝑏 ∈ (Vtx‘𝐺)) |
15 | 14 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) ∧ 𝑐 ∈ (Vtx‘𝐺)) → 𝑏 ∈ (Vtx‘𝐺)) |
16 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → 𝑏 ∈ (Vtx‘𝐺)) |
17 | | simplr 768 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → 𝑐 ∈ (Vtx‘𝐺)) |
18 | 13, 16, 17 | 3jca 1128 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺))) |
19 | | 3simpa 1148 |
. . . . . . . 8
⊢ ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) |
20 | 19 | adantl 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) |
21 | | grtrimap 47797 |
. . . . . . . 8
⊢ (𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝐹‘𝑎) ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑏) ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑐) ∈ (Vtx‘𝐻)) ∧ (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)} ∧ (♯‘(𝐹 “ 𝑇)) = 3))) |
22 | 21 | imp 406 |
. . . . . . 7
⊢ ((𝐹:(Vtx‘𝐺)–1-1→(Vtx‘𝐻) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3))) → (((𝐹‘𝑎) ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑏) ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑐) ∈ (Vtx‘𝐻)) ∧ (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)} ∧ (♯‘(𝐹 “ 𝑇)) = 3)) |
23 | 11, 18, 20, 22 | syl12anc 836 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → (((𝐹‘𝑎) ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑏) ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑐) ∈ (Vtx‘𝐻)) ∧ (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)} ∧ (♯‘(𝐹 “ 𝑇)) = 3)) |
24 | | grimgrtri.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ UHGraph) |
25 | | grimgrtri.h |
. . . . . . . . 9
⊢ (𝜑 → 𝐻 ∈ UHGraph) |
26 | | eqid 2740 |
. . . . . . . . . . . . . . 15
⊢
(Edg‘𝐻) =
(Edg‘𝐻) |
27 | 2, 3, 26 | grimedg 47787 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ↔ ((𝐹 “ {𝑎, 𝑏}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)))) |
28 | 2, 3, 26 | grimedg 47787 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → ({𝑎, 𝑐} ∈ (Edg‘𝐺) ↔ ((𝐹 “ {𝑎, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑐} ⊆ (Vtx‘𝐺)))) |
29 | 2, 3, 26 | grimedg 47787 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → ({𝑏, 𝑐} ∈ (Edg‘𝐺) ↔ ((𝐹 “ {𝑏, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑏, 𝑐} ⊆ (Vtx‘𝐺)))) |
30 | 27, 28, 29 | 3anbi123d 1436 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ↔ (((𝐹 “ {𝑎, 𝑏}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) ∧ ((𝐹 “ {𝑎, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑐} ⊆ (Vtx‘𝐺)) ∧ ((𝐹 “ {𝑏, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑏, 𝑐} ⊆ (Vtx‘𝐺))))) |
31 | | f1ofn 6863 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:(Vtx‘𝐺)–1-1-onto→(Vtx‘𝐻) → 𝐹 Fn (Vtx‘𝐺)) |
32 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → 𝐹 Fn (Vtx‘𝐺)) |
33 | | simprll 778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → 𝑎 ∈ (Vtx‘𝐺)) |
34 | | simprlr 779 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → 𝑏 ∈ (Vtx‘𝐺)) |
35 | | fnimapr 7005 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ 𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → (𝐹 “ {𝑎, 𝑏}) = {(𝐹‘𝑎), (𝐹‘𝑏)}) |
36 | 32, 33, 34, 35 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (𝐹 “ {𝑎, 𝑏}) = {(𝐹‘𝑎), (𝐹‘𝑏)}) |
37 | 36 | eleq1d 2829 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝐹 “ {𝑎, 𝑏}) ∈ (Edg‘𝐻) ↔ {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻))) |
38 | 37 | biimpd 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝐹 “ {𝑎, 𝑏}) ∈ (Edg‘𝐻) → {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻))) |
39 | 38 | adantrd 491 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (((𝐹 “ {𝑎, 𝑏}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) → {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻))) |
40 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → 𝑐 ∈ (Vtx‘𝐺)) |
41 | | fnimapr 7005 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ 𝑎 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (𝐹 “ {𝑎, 𝑐}) = {(𝐹‘𝑎), (𝐹‘𝑐)}) |
42 | 32, 33, 40, 41 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (𝐹 “ {𝑎, 𝑐}) = {(𝐹‘𝑎), (𝐹‘𝑐)}) |
43 | 42 | eleq1d 2829 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝐹 “ {𝑎, 𝑐}) ∈ (Edg‘𝐻) ↔ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻))) |
44 | 43 | biimpd 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝐹 “ {𝑎, 𝑐}) ∈ (Edg‘𝐻) → {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻))) |
45 | 44 | adantrd 491 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (((𝐹 “ {𝑎, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑐} ⊆ (Vtx‘𝐺)) → {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻))) |
46 | | fnimapr 7005 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺) ∧ 𝑐 ∈ (Vtx‘𝐺)) → (𝐹 “ {𝑏, 𝑐}) = {(𝐹‘𝑏), (𝐹‘𝑐)}) |
47 | 32, 34, 40, 46 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (𝐹 “ {𝑏, 𝑐}) = {(𝐹‘𝑏), (𝐹‘𝑐)}) |
48 | 47 | eleq1d 2829 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝐹 “ {𝑏, 𝑐}) ∈ (Edg‘𝐻) ↔ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))) |
49 | 48 | biimpd 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((𝐹 “ {𝑏, 𝑐}) ∈ (Edg‘𝐻) → {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))) |
50 | 49 | adantrd 491 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → (((𝐹 “ {𝑏, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑏, 𝑐} ⊆ (Vtx‘𝐺)) → {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))) |
51 | 39, 45, 50 | 3anim123d 1443 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 Fn (Vtx‘𝐺) ∧ ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺))) → ((((𝐹 “ {𝑎, 𝑏}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) ∧ ((𝐹 “ {𝑎, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑐} ⊆ (Vtx‘𝐺)) ∧ ((𝐹 “ {𝑏, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑏, 𝑐} ⊆ (Vtx‘𝐺))) → ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻)))) |
52 | 51 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 Fn (Vtx‘𝐺) → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ((((𝐹 “ {𝑎, 𝑏}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) ∧ ((𝐹 “ {𝑎, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑐} ⊆ (Vtx‘𝐺)) ∧ ((𝐹 “ {𝑏, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑏, 𝑐} ⊆ (Vtx‘𝐺))) → ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))))) |
53 | 52 | com23 86 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 Fn (Vtx‘𝐺) → ((((𝐹 “ {𝑎, 𝑏}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) ∧ ((𝐹 “ {𝑎, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑐} ⊆ (Vtx‘𝐺)) ∧ ((𝐹 “ {𝑏, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑏, 𝑐} ⊆ (Vtx‘𝐺))) → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))))) |
54 | 8, 31, 53 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝐺 GraphIso 𝐻) → ((((𝐹 “ {𝑎, 𝑏}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) ∧ ((𝐹 “ {𝑎, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑐} ⊆ (Vtx‘𝐺)) ∧ ((𝐹 “ {𝑏, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑏, 𝑐} ⊆ (Vtx‘𝐺))) → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))))) |
55 | 54 | 3ad2ant3 1135 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → ((((𝐹 “ {𝑎, 𝑏}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) ∧ ((𝐹 “ {𝑎, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑎, 𝑐} ⊆ (Vtx‘𝐺)) ∧ ((𝐹 “ {𝑏, 𝑐}) ∈ (Edg‘𝐻) ∧ {𝑏, 𝑐} ⊆ (Vtx‘𝐺))) → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))))) |
56 | 30, 55 | sylbid 240 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))))) |
57 | 56 | 2a1d 26 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (𝑇 = {𝑎, 𝑏, 𝑐} → ((♯‘𝑇) = 3 → (({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))))))) |
58 | 57 | 3impd 1348 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))))) |
59 | 58 | com23 86 |
. . . . . . . . 9
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))))) |
60 | 24, 25, 6, 59 | syl3anc 1371 |
. . . . . . . 8
⊢ (𝜑 → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))))) |
61 | 60 | impl 455 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) ∧ 𝑐 ∈ (Vtx‘𝐺)) → ((𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻)))) |
62 | 61 | imp 406 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))) |
63 | | tpeq1 4767 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐹‘𝑎) → {𝑥, 𝑦, 𝑧} = {(𝐹‘𝑎), 𝑦, 𝑧}) |
64 | 63 | eqeq2d 2751 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐹‘𝑎) → ((𝐹 “ 𝑇) = {𝑥, 𝑦, 𝑧} ↔ (𝐹 “ 𝑇) = {(𝐹‘𝑎), 𝑦, 𝑧})) |
65 | | preq1 4758 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐹‘𝑎) → {𝑥, 𝑦} = {(𝐹‘𝑎), 𝑦}) |
66 | 65 | eleq1d 2829 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐹‘𝑎) → ({𝑥, 𝑦} ∈ (Edg‘𝐻) ↔ {(𝐹‘𝑎), 𝑦} ∈ (Edg‘𝐻))) |
67 | | preq1 4758 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝐹‘𝑎) → {𝑥, 𝑧} = {(𝐹‘𝑎), 𝑧}) |
68 | 67 | eleq1d 2829 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝐹‘𝑎) → ({𝑥, 𝑧} ∈ (Edg‘𝐻) ↔ {(𝐹‘𝑎), 𝑧} ∈ (Edg‘𝐻))) |
69 | 66, 68 | 3anbi12d 1437 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐹‘𝑎) → (({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝐹‘𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))) |
70 | 64, 69 | 3anbi13d 1438 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹‘𝑎) → (((𝐹 “ 𝑇) = {𝑥, 𝑦, 𝑧} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ((𝐹 “ 𝑇) = {(𝐹‘𝑎), 𝑦, 𝑧} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({(𝐹‘𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))) |
71 | | tpeq2 4768 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐹‘𝑏) → {(𝐹‘𝑎), 𝑦, 𝑧} = {(𝐹‘𝑎), (𝐹‘𝑏), 𝑧}) |
72 | 71 | eqeq2d 2751 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑏) → ((𝐹 “ 𝑇) = {(𝐹‘𝑎), 𝑦, 𝑧} ↔ (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), 𝑧})) |
73 | | preq2 4759 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘𝑏) → {(𝐹‘𝑎), 𝑦} = {(𝐹‘𝑎), (𝐹‘𝑏)}) |
74 | 73 | eleq1d 2829 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐹‘𝑏) → ({(𝐹‘𝑎), 𝑦} ∈ (Edg‘𝐻) ↔ {(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻))) |
75 | | preq1 4758 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘𝑏) → {𝑦, 𝑧} = {(𝐹‘𝑏), 𝑧}) |
76 | 75 | eleq1d 2829 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐹‘𝑏) → ({𝑦, 𝑧} ∈ (Edg‘𝐻) ↔ {(𝐹‘𝑏), 𝑧} ∈ (Edg‘𝐻))) |
77 | 74, 76 | 3anbi13d 1438 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐹‘𝑏) → (({(𝐹‘𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), 𝑧} ∈ (Edg‘𝐻)))) |
78 | 72, 77 | 3anbi13d 1438 |
. . . . . . . . 9
⊢ (𝑦 = (𝐹‘𝑏) → (((𝐹 “ 𝑇) = {(𝐹‘𝑎), 𝑦, 𝑧} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({(𝐹‘𝑎), 𝑦} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))) ↔ ((𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), 𝑧} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), 𝑧} ∈ (Edg‘𝐻))))) |
79 | | tpeq3 4769 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐹‘𝑐) → {(𝐹‘𝑎), (𝐹‘𝑏), 𝑧} = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)}) |
80 | 79 | eqeq2d 2751 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐹‘𝑐) → ((𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), 𝑧} ↔ (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)})) |
81 | | preq2 4759 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐹‘𝑐) → {(𝐹‘𝑎), 𝑧} = {(𝐹‘𝑎), (𝐹‘𝑐)}) |
82 | 81 | eleq1d 2829 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐹‘𝑐) → ({(𝐹‘𝑎), 𝑧} ∈ (Edg‘𝐻) ↔ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻))) |
83 | | preq2 4759 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐹‘𝑐) → {(𝐹‘𝑏), 𝑧} = {(𝐹‘𝑏), (𝐹‘𝑐)}) |
84 | 83 | eleq1d 2829 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐹‘𝑐) → ({(𝐹‘𝑏), 𝑧} ∈ (Edg‘𝐻) ↔ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))) |
85 | 82, 84 | 3anbi23d 1439 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐹‘𝑐) → (({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), 𝑧} ∈ (Edg‘𝐻)) ↔ ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻)))) |
86 | 80, 85 | 3anbi13d 1438 |
. . . . . . . . 9
⊢ (𝑧 = (𝐹‘𝑐) → (((𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), 𝑧} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), 𝑧} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), 𝑧} ∈ (Edg‘𝐻))) ↔ ((𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻))))) |
87 | 70, 78, 86 | rspc3ev 3652 |
. . . . . . . 8
⊢ ((((𝐹‘𝑎) ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑏) ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑐) ∈ (Vtx‘𝐻)) ∧ ((𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻)))) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)((𝐹 “ 𝑇) = {𝑥, 𝑦, 𝑧} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))) |
88 | 87 | 3exp2 1354 |
. . . . . . 7
⊢ (((𝐹‘𝑎) ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑏) ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑐) ∈ (Vtx‘𝐻)) → ((𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)} → ((♯‘(𝐹 “ 𝑇)) = 3 → (({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻)) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)((𝐹 “ 𝑇) = {𝑥, 𝑦, 𝑧} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))))) |
89 | 88 | 3imp 1111 |
. . . . . 6
⊢ ((((𝐹‘𝑎) ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑏) ∈ (Vtx‘𝐻) ∧ (𝐹‘𝑐) ∈ (Vtx‘𝐻)) ∧ (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)} ∧ (♯‘(𝐹 “ 𝑇)) = 3) → (({(𝐹‘𝑎), (𝐹‘𝑏)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑎), (𝐹‘𝑐)} ∈ (Edg‘𝐻) ∧ {(𝐹‘𝑏), (𝐹‘𝑐)} ∈ (Edg‘𝐻)) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)((𝐹 “ 𝑇) = {𝑥, 𝑦, 𝑧} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))) |
90 | 23, 62, 89 | sylc 65 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) ∧ 𝑐 ∈ (Vtx‘𝐺)) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)((𝐹 “ 𝑇) = {𝑥, 𝑦, 𝑧} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))) |
91 | 90 | rexlimdva2 3163 |
. . . 4
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) → (∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)((𝐹 “ 𝑇) = {𝑥, 𝑦, 𝑧} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))) |
92 | 91 | rexlimdvva 3219 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)(𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3 ∧ ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑎, 𝑐} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺))) → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)((𝐹 “ 𝑇) = {𝑥, 𝑦, 𝑧} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻))))) |
93 | 5, 92 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)((𝐹 “ 𝑇) = {𝑥, 𝑦, 𝑧} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))) |
94 | 7, 26 | isgrtri 47794 |
. 2
⊢ ((𝐹 “ 𝑇) ∈ (GrTriangles‘𝐻) ↔ ∃𝑥 ∈ (Vtx‘𝐻)∃𝑦 ∈ (Vtx‘𝐻)∃𝑧 ∈ (Vtx‘𝐻)((𝐹 “ 𝑇) = {𝑥, 𝑦, 𝑧} ∧ (♯‘(𝐹 “ 𝑇)) = 3 ∧ ({𝑥, 𝑦} ∈ (Edg‘𝐻) ∧ {𝑥, 𝑧} ∈ (Edg‘𝐻) ∧ {𝑦, 𝑧} ∈ (Edg‘𝐻)))) |
95 | 93, 94 | sylibr 234 |
1
⊢ (𝜑 → (𝐹 “ 𝑇) ∈ (GrTriangles‘𝐻)) |