MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivinv Structured version   Visualization version   GIF version

Theorem grpodivinv 30390
Description: Group division by an inverse. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdiv.1 𝑋 = ran 𝐺
grpdiv.2 𝑁 = (invβ€˜πΊ)
grpdiv.3 𝐷 = ( /𝑔 β€˜πΊ)
Assertion
Ref Expression
grpodivinv ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷(π‘β€˜π΅)) = (𝐴𝐺𝐡))

Proof of Theorem grpodivinv
StepHypRef Expression
1 grpdiv.1 . . . . 5 𝑋 = ran 𝐺
2 grpdiv.2 . . . . 5 𝑁 = (invβ€˜πΊ)
31, 2grpoinvcl 30378 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜π΅) ∈ 𝑋)
433adant2 1128 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜π΅) ∈ 𝑋)
5 grpdiv.3 . . . 4 𝐷 = ( /𝑔 β€˜πΊ)
61, 2, 5grpodivval 30389 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ (π‘β€˜π΅) ∈ 𝑋) β†’ (𝐴𝐷(π‘β€˜π΅)) = (𝐴𝐺(π‘β€˜(π‘β€˜π΅))))
74, 6syld3an3 1406 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷(π‘β€˜π΅)) = (𝐴𝐺(π‘β€˜(π‘β€˜π΅))))
81, 2grpo2inv 30385 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π΅)) = 𝐡)
983adant2 1128 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (π‘β€˜(π‘β€˜π΅)) = 𝐡)
109oveq2d 7432 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐺(π‘β€˜(π‘β€˜π΅))) = (𝐴𝐺𝐡))
117, 10eqtrd 2765 1 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴𝐷(π‘β€˜π΅)) = (𝐴𝐺𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  ran crn 5673  β€˜cfv 6543  (class class class)co 7416  GrpOpcgr 30343  invcgn 30345   /𝑔 cgs 30346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7991  df-2nd 7992  df-grpo 30347  df-gid 30348  df-ginv 30349  df-gdiv 30350
This theorem is referenced by:  ablodivdiv4  30408
  Copyright terms: Public domain W3C validator