| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpodivinv | Structured version Visualization version GIF version | ||
| Description: Group division by an inverse. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpdiv.1 | ⊢ 𝑋 = ran 𝐺 |
| grpdiv.2 | ⊢ 𝑁 = (inv‘𝐺) |
| grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
| Ref | Expression |
|---|---|
| grpodivinv | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝑁‘𝐵)) = (𝐴𝐺𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpdiv.2 | . . . . 5 ⊢ 𝑁 = (inv‘𝐺) | |
| 3 | 1, 2 | grpoinvcl 30504 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ 𝑋) |
| 4 | 3 | 3adant2 1131 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ 𝑋) |
| 5 | grpdiv.3 | . . . 4 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
| 6 | 1, 2, 5 | grpodivval 30515 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐵) ∈ 𝑋) → (𝐴𝐷(𝑁‘𝐵)) = (𝐴𝐺(𝑁‘(𝑁‘𝐵)))) |
| 7 | 4, 6 | syld3an3 1411 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝑁‘𝐵)) = (𝐴𝐺(𝑁‘(𝑁‘𝐵)))) |
| 8 | 1, 2 | grpo2inv 30511 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝑁‘𝐵)) = 𝐵) |
| 9 | 8 | 3adant2 1131 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝑁‘𝐵)) = 𝐵) |
| 10 | 9 | oveq2d 7362 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(𝑁‘(𝑁‘𝐵))) = (𝐴𝐺𝐵)) |
| 11 | 7, 10 | eqtrd 2766 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝑁‘𝐵)) = (𝐴𝐺𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ran crn 5615 ‘cfv 6481 (class class class)co 7346 GrpOpcgr 30469 invcgn 30471 /𝑔 cgs 30472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-grpo 30473 df-gid 30474 df-ginv 30475 df-gdiv 30476 |
| This theorem is referenced by: ablodivdiv4 30534 |
| Copyright terms: Public domain | W3C validator |