| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpodivinv | Structured version Visualization version GIF version | ||
| Description: Group division by an inverse. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpdiv.1 | ⊢ 𝑋 = ran 𝐺 |
| grpdiv.2 | ⊢ 𝑁 = (inv‘𝐺) |
| grpdiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
| Ref | Expression |
|---|---|
| grpodivinv | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝑁‘𝐵)) = (𝐴𝐺𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpdiv.2 | . . . . 5 ⊢ 𝑁 = (inv‘𝐺) | |
| 3 | 1, 2 | grpoinvcl 30468 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ 𝑋) |
| 4 | 3 | 3adant2 1131 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ 𝑋) |
| 5 | grpdiv.3 | . . . 4 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
| 6 | 1, 2, 5 | grpodivval 30479 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ (𝑁‘𝐵) ∈ 𝑋) → (𝐴𝐷(𝑁‘𝐵)) = (𝐴𝐺(𝑁‘(𝑁‘𝐵)))) |
| 7 | 4, 6 | syld3an3 1411 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝑁‘𝐵)) = (𝐴𝐺(𝑁‘(𝑁‘𝐵)))) |
| 8 | 1, 2 | grpo2inv 30475 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝑁‘𝐵)) = 𝐵) |
| 9 | 8 | 3adant2 1131 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝑁‘𝐵)) = 𝐵) |
| 10 | 9 | oveq2d 7365 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(𝑁‘(𝑁‘𝐵))) = (𝐴𝐺𝐵)) |
| 11 | 7, 10 | eqtrd 2764 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝑁‘𝐵)) = (𝐴𝐺𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ran crn 5620 ‘cfv 6482 (class class class)co 7349 GrpOpcgr 30433 invcgn 30435 /𝑔 cgs 30436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-grpo 30437 df-gid 30438 df-ginv 30439 df-gdiv 30440 |
| This theorem is referenced by: ablodivdiv4 30498 |
| Copyright terms: Public domain | W3C validator |