Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvnegneg | Structured version Visualization version GIF version |
Description: Double negative of a vector. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvnegneg.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvnegneg.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
Ref | Expression |
---|---|
nvnegneg | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 11823 | . . . 4 ⊢ -1 ∈ ℂ | |
2 | nvnegneg.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | nvnegneg.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
4 | 2, 3 | nvscl 28553 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) ∈ 𝑋) |
5 | 1, 4 | mp3an2 1450 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) ∈ 𝑋) |
6 | eqid 2738 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
7 | eqid 2738 | . . . 4 ⊢ (inv‘( +𝑣 ‘𝑈)) = (inv‘( +𝑣 ‘𝑈)) | |
8 | 2, 6, 3, 7 | nvinv 28566 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = ((inv‘( +𝑣 ‘𝑈))‘(-1𝑆𝐴))) |
9 | 5, 8 | syldan 594 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = ((inv‘( +𝑣 ‘𝑈))‘(-1𝑆𝐴))) |
10 | 2, 6, 3, 7 | nvinv 28566 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = ((inv‘( +𝑣 ‘𝑈))‘𝐴)) |
11 | 10 | fveq2d 6672 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((inv‘( +𝑣 ‘𝑈))‘(-1𝑆𝐴)) = ((inv‘( +𝑣 ‘𝑈))‘((inv‘( +𝑣 ‘𝑈))‘𝐴))) |
12 | 6 | nvgrp 28544 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ( +𝑣 ‘𝑈) ∈ GrpOp) |
13 | 2, 6 | bafval 28531 | . . . 4 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
14 | 13, 7 | grpo2inv 28458 | . . 3 ⊢ ((( +𝑣 ‘𝑈) ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((inv‘( +𝑣 ‘𝑈))‘((inv‘( +𝑣 ‘𝑈))‘𝐴)) = 𝐴) |
15 | 12, 14 | sylan 583 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((inv‘( +𝑣 ‘𝑈))‘((inv‘( +𝑣 ‘𝑈))‘𝐴)) = 𝐴) |
16 | 9, 11, 15 | 3eqtrd 2777 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ‘cfv 6333 (class class class)co 7164 ℂcc 10606 1c1 10609 -cneg 10942 GrpOpcgr 28416 invcgn 28418 NrmCVeccnv 28511 +𝑣 cpv 28512 BaseSetcba 28513 ·𝑠OLD cns 28514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-po 5438 df-so 5439 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-1st 7707 df-2nd 7708 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-pnf 10748 df-mnf 10749 df-ltxr 10751 df-sub 10943 df-neg 10944 df-grpo 28420 df-gid 28421 df-ginv 28422 df-ablo 28472 df-vc 28486 df-nv 28519 df-va 28522 df-ba 28523 df-sm 28524 df-0v 28525 df-nmcv 28527 |
This theorem is referenced by: nvdif 28593 |
Copyright terms: Public domain | W3C validator |