Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvnegneg | Structured version Visualization version GIF version |
Description: Double negative of a vector. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvnegneg.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvnegneg.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
Ref | Expression |
---|---|
nvnegneg | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12017 | . . . 4 ⊢ -1 ∈ ℂ | |
2 | nvnegneg.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | nvnegneg.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
4 | 2, 3 | nvscl 28889 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) ∈ 𝑋) |
5 | 1, 4 | mp3an2 1447 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) ∈ 𝑋) |
6 | eqid 2738 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
7 | eqid 2738 | . . . 4 ⊢ (inv‘( +𝑣 ‘𝑈)) = (inv‘( +𝑣 ‘𝑈)) | |
8 | 2, 6, 3, 7 | nvinv 28902 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = ((inv‘( +𝑣 ‘𝑈))‘(-1𝑆𝐴))) |
9 | 5, 8 | syldan 590 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = ((inv‘( +𝑣 ‘𝑈))‘(-1𝑆𝐴))) |
10 | 2, 6, 3, 7 | nvinv 28902 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = ((inv‘( +𝑣 ‘𝑈))‘𝐴)) |
11 | 10 | fveq2d 6760 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((inv‘( +𝑣 ‘𝑈))‘(-1𝑆𝐴)) = ((inv‘( +𝑣 ‘𝑈))‘((inv‘( +𝑣 ‘𝑈))‘𝐴))) |
12 | 6 | nvgrp 28880 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ( +𝑣 ‘𝑈) ∈ GrpOp) |
13 | 2, 6 | bafval 28867 | . . . 4 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
14 | 13, 7 | grpo2inv 28794 | . . 3 ⊢ ((( +𝑣 ‘𝑈) ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((inv‘( +𝑣 ‘𝑈))‘((inv‘( +𝑣 ‘𝑈))‘𝐴)) = 𝐴) |
15 | 12, 14 | sylan 579 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((inv‘( +𝑣 ‘𝑈))‘((inv‘( +𝑣 ‘𝑈))‘𝐴)) = 𝐴) |
16 | 9, 11, 15 | 3eqtrd 2782 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 1c1 10803 -cneg 11136 GrpOpcgr 28752 invcgn 28754 NrmCVeccnv 28847 +𝑣 cpv 28848 BaseSetcba 28849 ·𝑠OLD cns 28850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 df-grpo 28756 df-gid 28757 df-ginv 28758 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 |
This theorem is referenced by: nvdif 28929 |
Copyright terms: Public domain | W3C validator |