MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnegneg Structured version   Visualization version   GIF version

Theorem nvnegneg 30596
Description: Double negative of a vector. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvnegneg.1 𝑋 = (BaseSet‘𝑈)
nvnegneg.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvnegneg ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)

Proof of Theorem nvnegneg
StepHypRef Expression
1 neg1cn 12362 . . . 4 -1 ∈ ℂ
2 nvnegneg.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
3 nvnegneg.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
42, 3nvscl 30573 . . . 4 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
51, 4mp3an2 1450 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
6 eqid 2734 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
7 eqid 2734 . . . 4 (inv‘( +𝑣𝑈)) = (inv‘( +𝑣𝑈))
82, 6, 3, 7nvinv 30586 . . 3 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = ((inv‘( +𝑣𝑈))‘(-1𝑆𝐴)))
95, 8syldan 591 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = ((inv‘( +𝑣𝑈))‘(-1𝑆𝐴)))
102, 6, 3, 7nvinv 30586 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) = ((inv‘( +𝑣𝑈))‘𝐴))
1110fveq2d 6890 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((inv‘( +𝑣𝑈))‘(-1𝑆𝐴)) = ((inv‘( +𝑣𝑈))‘((inv‘( +𝑣𝑈))‘𝐴)))
126nvgrp 30564 . . 3 (𝑈 ∈ NrmCVec → ( +𝑣𝑈) ∈ GrpOp)
132, 6bafval 30551 . . . 4 𝑋 = ran ( +𝑣𝑈)
1413, 7grpo2inv 30478 . . 3 ((( +𝑣𝑈) ∈ GrpOp ∧ 𝐴𝑋) → ((inv‘( +𝑣𝑈))‘((inv‘( +𝑣𝑈))‘𝐴)) = 𝐴)
1512, 14sylan 580 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((inv‘( +𝑣𝑈))‘((inv‘( +𝑣𝑈))‘𝐴)) = 𝐴)
169, 11, 153eqtrd 2773 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413  cc 11135  1c1 11138  -cneg 11475  GrpOpcgr 30436  invcgn 30438  NrmCVeccnv 30531   +𝑣 cpv 30532  BaseSetcba 30533   ·𝑠OLD cns 30534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-ltxr 11282  df-sub 11476  df-neg 11477  df-grpo 30440  df-gid 30441  df-ginv 30442  df-ablo 30492  df-vc 30506  df-nv 30539  df-va 30542  df-ba 30543  df-sm 30544  df-0v 30545  df-nmcv 30547
This theorem is referenced by:  nvdif  30613
  Copyright terms: Public domain W3C validator