MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnegneg Structured version   Visualization version   GIF version

Theorem nvnegneg 28420
Description: Double negative of a vector. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvnegneg.1 𝑋 = (BaseSet‘𝑈)
nvnegneg.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvnegneg ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)

Proof of Theorem nvnegneg
StepHypRef Expression
1 neg1cn 11745 . . . 4 -1 ∈ ℂ
2 nvnegneg.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
3 nvnegneg.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
42, 3nvscl 28397 . . . 4 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
51, 4mp3an2 1445 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
6 eqid 2821 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
7 eqid 2821 . . . 4 (inv‘( +𝑣𝑈)) = (inv‘( +𝑣𝑈))
82, 6, 3, 7nvinv 28410 . . 3 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = ((inv‘( +𝑣𝑈))‘(-1𝑆𝐴)))
95, 8syldan 593 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = ((inv‘( +𝑣𝑈))‘(-1𝑆𝐴)))
102, 6, 3, 7nvinv 28410 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) = ((inv‘( +𝑣𝑈))‘𝐴))
1110fveq2d 6668 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((inv‘( +𝑣𝑈))‘(-1𝑆𝐴)) = ((inv‘( +𝑣𝑈))‘((inv‘( +𝑣𝑈))‘𝐴)))
126nvgrp 28388 . . 3 (𝑈 ∈ NrmCVec → ( +𝑣𝑈) ∈ GrpOp)
132, 6bafval 28375 . . . 4 𝑋 = ran ( +𝑣𝑈)
1413, 7grpo2inv 28302 . . 3 ((( +𝑣𝑈) ∈ GrpOp ∧ 𝐴𝑋) → ((inv‘( +𝑣𝑈))‘((inv‘( +𝑣𝑈))‘𝐴)) = 𝐴)
1512, 14sylan 582 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((inv‘( +𝑣𝑈))‘((inv‘( +𝑣𝑈))‘𝐴)) = 𝐴)
169, 11, 153eqtrd 2860 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  cfv 6349  (class class class)co 7150  cc 10529  1c1 10532  -cneg 10865  GrpOpcgr 28260  invcgn 28262  NrmCVeccnv 28355   +𝑣 cpv 28356  BaseSetcba 28357   ·𝑠OLD cns 28358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-ltxr 10674  df-sub 10866  df-neg 10867  df-grpo 28264  df-gid 28265  df-ginv 28266  df-ablo 28316  df-vc 28330  df-nv 28363  df-va 28366  df-ba 28367  df-sm 28368  df-0v 28369  df-nmcv 28371
This theorem is referenced by:  nvdif  28437
  Copyright terms: Public domain W3C validator