MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnegneg Structured version   Visualization version   GIF version

Theorem nvnegneg 28059
Description: Double negative of a vector. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvnegneg.1 𝑋 = (BaseSet‘𝑈)
nvnegneg.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvnegneg ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)

Proof of Theorem nvnegneg
StepHypRef Expression
1 neg1cn 11472 . . . 4 -1 ∈ ℂ
2 nvnegneg.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
3 nvnegneg.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
42, 3nvscl 28036 . . . 4 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
51, 4mp3an2 1579 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
6 eqid 2825 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
7 eqid 2825 . . . 4 (inv‘( +𝑣𝑈)) = (inv‘( +𝑣𝑈))
82, 6, 3, 7nvinv 28049 . . 3 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋) → (-1𝑆(-1𝑆𝐴)) = ((inv‘( +𝑣𝑈))‘(-1𝑆𝐴)))
95, 8syldan 587 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = ((inv‘( +𝑣𝑈))‘(-1𝑆𝐴)))
102, 6, 3, 7nvinv 28049 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) = ((inv‘( +𝑣𝑈))‘𝐴))
1110fveq2d 6437 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((inv‘( +𝑣𝑈))‘(-1𝑆𝐴)) = ((inv‘( +𝑣𝑈))‘((inv‘( +𝑣𝑈))‘𝐴)))
126nvgrp 28027 . . 3 (𝑈 ∈ NrmCVec → ( +𝑣𝑈) ∈ GrpOp)
132, 6bafval 28014 . . . 4 𝑋 = ran ( +𝑣𝑈)
1413, 7grpo2inv 27941 . . 3 ((( +𝑣𝑈) ∈ GrpOp ∧ 𝐴𝑋) → ((inv‘( +𝑣𝑈))‘((inv‘( +𝑣𝑈))‘𝐴)) = 𝐴)
1512, 14sylan 577 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((inv‘( +𝑣𝑈))‘((inv‘( +𝑣𝑈))‘𝐴)) = 𝐴)
169, 11, 153eqtrd 2865 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆(-1𝑆𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  cfv 6123  (class class class)co 6905  cc 10250  1c1 10253  -cneg 10586  GrpOpcgr 27899  invcgn 27901  NrmCVeccnv 27994   +𝑣 cpv 27995  BaseSetcba 27996   ·𝑠OLD cns 27997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-ltxr 10396  df-sub 10587  df-neg 10588  df-grpo 27903  df-gid 27904  df-ginv 27905  df-ablo 27955  df-vc 27969  df-nv 28002  df-va 28005  df-ba 28006  df-sm 28007  df-0v 28008  df-nmcv 28010
This theorem is referenced by:  nvdif  28076
  Copyright terms: Public domain W3C validator