MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngp Structured version   Visualization version   GIF version

Theorem tngngp 23724
Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngngp.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngngp.x 𝑋 = (Base‘𝐺)
tngngp.m = (-g𝐺)
tngngp.z 0 = (0g𝐺)
Assertion
Ref Expression
tngngp (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝑁,𝑦   𝑥,𝑇,𝑦   𝑥,𝑋,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem tngngp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngngp.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
2 tngngp.x . . . . 5 𝑋 = (Base‘𝐺)
3 eqid 2738 . . . . 5 (dist‘𝑇) = (dist‘𝑇)
41, 2, 3tngngp2 23722 . . . 4 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (dist‘𝑇) ∈ (Met‘𝑋))))
54simprbda 498 . . 3 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐺 ∈ Grp)
6 simplr 765 . . . . . . 7 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑇 ∈ NrmGrp)
7 simpr 484 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑥𝑋)
82fvexi 6770 . . . . . . . . . . 11 𝑋 ∈ V
9 reex 10893 . . . . . . . . . . 11 ℝ ∈ V
10 fex2 7754 . . . . . . . . . . 11 ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V) → 𝑁 ∈ V)
118, 9, 10mp3an23 1451 . . . . . . . . . 10 (𝑁:𝑋⟶ℝ → 𝑁 ∈ V)
1211ad2antrr 722 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑁 ∈ V)
131, 2tngbas 23704 . . . . . . . . 9 (𝑁 ∈ V → 𝑋 = (Base‘𝑇))
1412, 13syl 17 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑋 = (Base‘𝑇))
157, 14eleqtrd 2841 . . . . . . 7 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑥 ∈ (Base‘𝑇))
16 eqid 2738 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
17 eqid 2738 . . . . . . . 8 (norm‘𝑇) = (norm‘𝑇)
18 eqid 2738 . . . . . . . 8 (0g𝑇) = (0g𝑇)
1916, 17, 18nmeq0 23680 . . . . . . 7 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇)) → (((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)))
206, 15, 19syl2anc 583 . . . . . 6 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (((norm‘𝑇)‘𝑥) = 0 ↔ 𝑥 = (0g𝑇)))
215adantr 480 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
22 simpll 763 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑁:𝑋⟶ℝ)
231, 2, 9tngnm 23721 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝑁 = (norm‘𝑇))
2421, 22, 23syl2anc 583 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 𝑁 = (norm‘𝑇))
2524fveq1d 6758 . . . . . . 7 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑁𝑥) = ((norm‘𝑇)‘𝑥))
2625eqeq1d 2740 . . . . . 6 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → ((𝑁𝑥) = 0 ↔ ((norm‘𝑇)‘𝑥) = 0))
27 tngngp.z . . . . . . . . 9 0 = (0g𝐺)
281, 27tng0 23708 . . . . . . . 8 (𝑁 ∈ V → 0 = (0g𝑇))
2912, 28syl 17 . . . . . . 7 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → 0 = (0g𝑇))
3029eqeq2d 2749 . . . . . 6 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑥 = 0𝑥 = (0g𝑇)))
3120, 26, 303bitr4d 310 . . . . 5 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
32 simpllr 772 . . . . . . . 8 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑇 ∈ NrmGrp)
3315adantr 480 . . . . . . . 8 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑥 ∈ (Base‘𝑇))
3414eleq2d 2824 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑦𝑋𝑦 ∈ (Base‘𝑇)))
3534biimpa 476 . . . . . . . 8 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → 𝑦 ∈ (Base‘𝑇))
36 eqid 2738 . . . . . . . . 9 (-g𝑇) = (-g𝑇)
3716, 17, 36nmmtri 23684 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝑇) ∧ 𝑦 ∈ (Base‘𝑇)) → ((norm‘𝑇)‘(𝑥(-g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
3832, 33, 35, 37syl3anc 1369 . . . . . . 7 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((norm‘𝑇)‘(𝑥(-g𝑇)𝑦)) ≤ (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
39 tngngp.m . . . . . . . . . . 11 = (-g𝐺)
402, 14eqtr3id 2793 . . . . . . . . . . . 12 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (Base‘𝐺) = (Base‘𝑇))
41 eqid 2738 . . . . . . . . . . . . . 14 (+g𝐺) = (+g𝐺)
421, 41tngplusg 23706 . . . . . . . . . . . . 13 (𝑁 ∈ V → (+g𝐺) = (+g𝑇))
4312, 42syl 17 . . . . . . . . . . . 12 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (+g𝐺) = (+g𝑇))
4440, 43grpsubpropd 18595 . . . . . . . . . . 11 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (-g𝐺) = (-g𝑇))
4539, 44eqtrid 2790 . . . . . . . . . 10 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → = (-g𝑇))
4645oveqd 7272 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑥 𝑦) = (𝑥(-g𝑇)𝑦))
4724, 46fveq12d 6763 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑁‘(𝑥 𝑦)) = ((norm‘𝑇)‘(𝑥(-g𝑇)𝑦)))
4847adantr 480 . . . . . . 7 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑁‘(𝑥 𝑦)) = ((norm‘𝑇)‘(𝑥(-g𝑇)𝑦)))
4924fveq1d 6758 . . . . . . . . 9 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (𝑁𝑦) = ((norm‘𝑇)‘𝑦))
5025, 49oveq12d 7273 . . . . . . . 8 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → ((𝑁𝑥) + (𝑁𝑦)) = (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
5150adantr 480 . . . . . . 7 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → ((𝑁𝑥) + (𝑁𝑦)) = (((norm‘𝑇)‘𝑥) + ((norm‘𝑇)‘𝑦)))
5238, 48, 513brtr4d 5102 . . . . . 6 ((((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) ∧ 𝑦𝑋) → (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
5352ralrimiva 3107 . . . . 5 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
5431, 53jca 511 . . . 4 (((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) ∧ 𝑥𝑋) → (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
5554ralrimiva 3107 . . 3 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
565, 55jca 511 . 2 ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
57 simprl 767 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝐺 ∈ Grp)
58 simpl 482 . . 3 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝑁:𝑋⟶ℝ)
59 simpl 482 . . . . . 6 ((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
6059ralimi 3086 . . . . 5 (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋 ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
6160ad2antll 725 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → ∀𝑥𝑋 ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
62 fveq2 6756 . . . . . . 7 (𝑥 = 𝑎 → (𝑁𝑥) = (𝑁𝑎))
6362eqeq1d 2740 . . . . . 6 (𝑥 = 𝑎 → ((𝑁𝑥) = 0 ↔ (𝑁𝑎) = 0))
64 eqeq1 2742 . . . . . 6 (𝑥 = 𝑎 → (𝑥 = 0𝑎 = 0 ))
6563, 64bibi12d 345 . . . . 5 (𝑥 = 𝑎 → (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ↔ ((𝑁𝑎) = 0 ↔ 𝑎 = 0 )))
6665rspccva 3551 . . . 4 ((∀𝑥𝑋 ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ 𝑎𝑋) → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 ))
6761, 66sylan 579 . . 3 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ 𝑎𝑋) → ((𝑁𝑎) = 0 ↔ 𝑎 = 0 ))
68 simpr 484 . . . . . 6 ((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
6968ralimi 3086 . . . . 5 (∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
7069ad2antll 725 . . . 4 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
71 fvoveq1 7278 . . . . . . 7 (𝑥 = 𝑎 → (𝑁‘(𝑥 𝑦)) = (𝑁‘(𝑎 𝑦)))
7262oveq1d 7270 . . . . . . 7 (𝑥 = 𝑎 → ((𝑁𝑥) + (𝑁𝑦)) = ((𝑁𝑎) + (𝑁𝑦)))
7371, 72breq12d 5083 . . . . . 6 (𝑥 = 𝑎 → ((𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ↔ (𝑁‘(𝑎 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦))))
74 oveq2 7263 . . . . . . . 8 (𝑦 = 𝑏 → (𝑎 𝑦) = (𝑎 𝑏))
7574fveq2d 6760 . . . . . . 7 (𝑦 = 𝑏 → (𝑁‘(𝑎 𝑦)) = (𝑁‘(𝑎 𝑏)))
76 fveq2 6756 . . . . . . . 8 (𝑦 = 𝑏 → (𝑁𝑦) = (𝑁𝑏))
7776oveq2d 7271 . . . . . . 7 (𝑦 = 𝑏 → ((𝑁𝑎) + (𝑁𝑦)) = ((𝑁𝑎) + (𝑁𝑏)))
7875, 77breq12d 5083 . . . . . 6 (𝑦 = 𝑏 → ((𝑁‘(𝑎 𝑦)) ≤ ((𝑁𝑎) + (𝑁𝑦)) ↔ (𝑁‘(𝑎 𝑏)) ≤ ((𝑁𝑎) + (𝑁𝑏))))
7973, 78rspc2va 3563 . . . . 5 (((𝑎𝑋𝑏𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (𝑁‘(𝑎 𝑏)) ≤ ((𝑁𝑎) + (𝑁𝑏)))
8079ancoms 458 . . . 4 ((∀𝑥𝑋𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎 𝑏)) ≤ ((𝑁𝑎) + (𝑁𝑏)))
8170, 80sylan 579 . . 3 (((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) ∧ (𝑎𝑋𝑏𝑋)) → (𝑁‘(𝑎 𝑏)) ≤ ((𝑁𝑎) + (𝑁𝑏)))
821, 2, 39, 27, 57, 58, 67, 81tngngpd 23723 . 2 ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))) → 𝑇 ∈ NrmGrp)
8356, 82impbida 797 1 (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑋 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805  cle 10941  Basecbs 16840  +gcplusg 16888  distcds 16897  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  Metcmet 20496  normcnm 23638  NrmGrpcngp 23639   toNrmGrp ctng 23640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-tset 16907  df-ds 16910  df-rest 17050  df-topn 17051  df-0g 17069  df-topgen 17071  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-xms 23381  df-ms 23382  df-nm 23644  df-ngp 23645  df-tng 23646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator