MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngngp Structured version   Visualization version   GIF version

Theorem tngngp 24171
Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
tngngp.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngngp.x 𝑋 = (Baseβ€˜πΊ)
tngngp.m βˆ’ = (-gβ€˜πΊ)
tngngp.z 0 = (0gβ€˜πΊ)
Assertion
Ref Expression
tngngp (𝑁:π‘‹βŸΆβ„ β†’ (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))))
Distinct variable groups:   π‘₯,𝑦, βˆ’   π‘₯,𝑁,𝑦   π‘₯,𝑇,𝑦   π‘₯,𝑋,𝑦   π‘₯, 0 ,𝑦
Allowed substitution hints:   𝐺(π‘₯,𝑦)

Proof of Theorem tngngp
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngngp.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
2 tngngp.x . . . . 5 𝑋 = (Baseβ€˜πΊ)
3 eqid 2733 . . . . 5 (distβ€˜π‘‡) = (distβ€˜π‘‡)
41, 2, 3tngngp2 24169 . . . 4 (𝑁:π‘‹βŸΆβ„ β†’ (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ (distβ€˜π‘‡) ∈ (Metβ€˜π‘‹))))
54simprbda 500 . . 3 ((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) β†’ 𝐺 ∈ Grp)
6 simplr 768 . . . . . . 7 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ 𝑇 ∈ NrmGrp)
7 simpr 486 . . . . . . . 8 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ 𝑋)
82fvexi 6906 . . . . . . . . . . 11 𝑋 ∈ V
9 reex 11201 . . . . . . . . . . 11 ℝ ∈ V
10 fex2 7924 . . . . . . . . . . 11 ((𝑁:π‘‹βŸΆβ„ ∧ 𝑋 ∈ V ∧ ℝ ∈ V) β†’ 𝑁 ∈ V)
118, 9, 10mp3an23 1454 . . . . . . . . . 10 (𝑁:π‘‹βŸΆβ„ β†’ 𝑁 ∈ V)
1211ad2antrr 725 . . . . . . . . 9 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ 𝑁 ∈ V)
131, 2tngbas 24151 . . . . . . . . 9 (𝑁 ∈ V β†’ 𝑋 = (Baseβ€˜π‘‡))
1412, 13syl 17 . . . . . . . 8 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ 𝑋 = (Baseβ€˜π‘‡))
157, 14eleqtrd 2836 . . . . . . 7 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ (Baseβ€˜π‘‡))
16 eqid 2733 . . . . . . . 8 (Baseβ€˜π‘‡) = (Baseβ€˜π‘‡)
17 eqid 2733 . . . . . . . 8 (normβ€˜π‘‡) = (normβ€˜π‘‡)
18 eqid 2733 . . . . . . . 8 (0gβ€˜π‘‡) = (0gβ€˜π‘‡)
1916, 17, 18nmeq0 24127 . . . . . . 7 ((𝑇 ∈ NrmGrp ∧ π‘₯ ∈ (Baseβ€˜π‘‡)) β†’ (((normβ€˜π‘‡)β€˜π‘₯) = 0 ↔ π‘₯ = (0gβ€˜π‘‡)))
206, 15, 19syl2anc 585 . . . . . 6 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ (((normβ€˜π‘‡)β€˜π‘₯) = 0 ↔ π‘₯ = (0gβ€˜π‘‡)))
215adantr 482 . . . . . . . . 9 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ 𝐺 ∈ Grp)
22 simpll 766 . . . . . . . . 9 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ 𝑁:π‘‹βŸΆβ„)
231, 2, 9tngnm 24168 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑁:π‘‹βŸΆβ„) β†’ 𝑁 = (normβ€˜π‘‡))
2421, 22, 23syl2anc 585 . . . . . . . 8 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ 𝑁 = (normβ€˜π‘‡))
2524fveq1d 6894 . . . . . . 7 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ (π‘β€˜π‘₯) = ((normβ€˜π‘‡)β€˜π‘₯))
2625eqeq1d 2735 . . . . . 6 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ ((π‘β€˜π‘₯) = 0 ↔ ((normβ€˜π‘‡)β€˜π‘₯) = 0))
27 tngngp.z . . . . . . . . 9 0 = (0gβ€˜πΊ)
281, 27tng0 24155 . . . . . . . 8 (𝑁 ∈ V β†’ 0 = (0gβ€˜π‘‡))
2912, 28syl 17 . . . . . . 7 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ 0 = (0gβ€˜π‘‡))
3029eqeq2d 2744 . . . . . 6 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯ = 0 ↔ π‘₯ = (0gβ€˜π‘‡)))
3120, 26, 303bitr4d 311 . . . . 5 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ ((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ))
32 simpllr 775 . . . . . . . 8 ((((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) β†’ 𝑇 ∈ NrmGrp)
3315adantr 482 . . . . . . . 8 ((((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) β†’ π‘₯ ∈ (Baseβ€˜π‘‡))
3414eleq2d 2820 . . . . . . . . 9 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ (𝑦 ∈ 𝑋 ↔ 𝑦 ∈ (Baseβ€˜π‘‡)))
3534biimpa 478 . . . . . . . 8 ((((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) β†’ 𝑦 ∈ (Baseβ€˜π‘‡))
36 eqid 2733 . . . . . . . . 9 (-gβ€˜π‘‡) = (-gβ€˜π‘‡)
3716, 17, 36nmmtri 24131 . . . . . . . 8 ((𝑇 ∈ NrmGrp ∧ π‘₯ ∈ (Baseβ€˜π‘‡) ∧ 𝑦 ∈ (Baseβ€˜π‘‡)) β†’ ((normβ€˜π‘‡)β€˜(π‘₯(-gβ€˜π‘‡)𝑦)) ≀ (((normβ€˜π‘‡)β€˜π‘₯) + ((normβ€˜π‘‡)β€˜π‘¦)))
3832, 33, 35, 37syl3anc 1372 . . . . . . 7 ((((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) β†’ ((normβ€˜π‘‡)β€˜(π‘₯(-gβ€˜π‘‡)𝑦)) ≀ (((normβ€˜π‘‡)β€˜π‘₯) + ((normβ€˜π‘‡)β€˜π‘¦)))
39 tngngp.m . . . . . . . . . . 11 βˆ’ = (-gβ€˜πΊ)
402, 14eqtr3id 2787 . . . . . . . . . . . 12 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ (Baseβ€˜πΊ) = (Baseβ€˜π‘‡))
41 eqid 2733 . . . . . . . . . . . . . 14 (+gβ€˜πΊ) = (+gβ€˜πΊ)
421, 41tngplusg 24153 . . . . . . . . . . . . 13 (𝑁 ∈ V β†’ (+gβ€˜πΊ) = (+gβ€˜π‘‡))
4312, 42syl 17 . . . . . . . . . . . 12 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ (+gβ€˜πΊ) = (+gβ€˜π‘‡))
4440, 43grpsubpropd 18928 . . . . . . . . . . 11 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ (-gβ€˜πΊ) = (-gβ€˜π‘‡))
4539, 44eqtrid 2785 . . . . . . . . . 10 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ βˆ’ = (-gβ€˜π‘‡))
4645oveqd 7426 . . . . . . . . 9 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ (π‘₯ βˆ’ 𝑦) = (π‘₯(-gβ€˜π‘‡)𝑦))
4724, 46fveq12d 6899 . . . . . . . 8 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ (π‘β€˜(π‘₯ βˆ’ 𝑦)) = ((normβ€˜π‘‡)β€˜(π‘₯(-gβ€˜π‘‡)𝑦)))
4847adantr 482 . . . . . . 7 ((((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) β†’ (π‘β€˜(π‘₯ βˆ’ 𝑦)) = ((normβ€˜π‘‡)β€˜(π‘₯(-gβ€˜π‘‡)𝑦)))
4924fveq1d 6894 . . . . . . . . 9 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ (π‘β€˜π‘¦) = ((normβ€˜π‘‡)β€˜π‘¦))
5025, 49oveq12d 7427 . . . . . . . 8 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)) = (((normβ€˜π‘‡)β€˜π‘₯) + ((normβ€˜π‘‡)β€˜π‘¦)))
5150adantr 482 . . . . . . 7 ((((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) β†’ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)) = (((normβ€˜π‘‡)β€˜π‘₯) + ((normβ€˜π‘‡)β€˜π‘¦)))
5238, 48, 513brtr4d 5181 . . . . . 6 ((((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) β†’ (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))
5352ralrimiva 3147 . . . . 5 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))
5431, 53jca 513 . . . 4 (((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) ∧ π‘₯ ∈ 𝑋) β†’ (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))
5554ralrimiva 3147 . . 3 ((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) β†’ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))
565, 55jca 513 . 2 ((𝑁:π‘‹βŸΆβ„ ∧ 𝑇 ∈ NrmGrp) β†’ (𝐺 ∈ Grp ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))))
57 simprl 770 . . 3 ((𝑁:π‘‹βŸΆβ„ ∧ (𝐺 ∈ Grp ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))) β†’ 𝐺 ∈ Grp)
58 simpl 484 . . 3 ((𝑁:π‘‹βŸΆβ„ ∧ (𝐺 ∈ Grp ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))) β†’ 𝑁:π‘‹βŸΆβ„)
59 simpl 484 . . . . . 6 ((((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))) β†’ ((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ))
6059ralimi 3084 . . . . 5 (βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))) β†’ βˆ€π‘₯ ∈ 𝑋 ((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ))
6160ad2antll 728 . . . 4 ((𝑁:π‘‹βŸΆβ„ ∧ (𝐺 ∈ Grp ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))) β†’ βˆ€π‘₯ ∈ 𝑋 ((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ))
62 fveq2 6892 . . . . . . 7 (π‘₯ = π‘Ž β†’ (π‘β€˜π‘₯) = (π‘β€˜π‘Ž))
6362eqeq1d 2735 . . . . . 6 (π‘₯ = π‘Ž β†’ ((π‘β€˜π‘₯) = 0 ↔ (π‘β€˜π‘Ž) = 0))
64 eqeq1 2737 . . . . . 6 (π‘₯ = π‘Ž β†’ (π‘₯ = 0 ↔ π‘Ž = 0 ))
6563, 64bibi12d 346 . . . . 5 (π‘₯ = π‘Ž β†’ (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ↔ ((π‘β€˜π‘Ž) = 0 ↔ π‘Ž = 0 )))
6665rspccva 3612 . . . 4 ((βˆ€π‘₯ ∈ 𝑋 ((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ π‘Ž ∈ 𝑋) β†’ ((π‘β€˜π‘Ž) = 0 ↔ π‘Ž = 0 ))
6761, 66sylan 581 . . 3 (((𝑁:π‘‹βŸΆβ„ ∧ (𝐺 ∈ Grp ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))) ∧ π‘Ž ∈ 𝑋) β†’ ((π‘β€˜π‘Ž) = 0 ↔ π‘Ž = 0 ))
68 simpr 486 . . . . . 6 ((((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))) β†’ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))
6968ralimi 3084 . . . . 5 (βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))
7069ad2antll 728 . . . 4 ((𝑁:π‘‹βŸΆβ„ ∧ (𝐺 ∈ Grp ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))) β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)))
71 fvoveq1 7432 . . . . . . 7 (π‘₯ = π‘Ž β†’ (π‘β€˜(π‘₯ βˆ’ 𝑦)) = (π‘β€˜(π‘Ž βˆ’ 𝑦)))
7262oveq1d 7424 . . . . . . 7 (π‘₯ = π‘Ž β†’ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)) = ((π‘β€˜π‘Ž) + (π‘β€˜π‘¦)))
7371, 72breq12d 5162 . . . . . 6 (π‘₯ = π‘Ž β†’ ((π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)) ↔ (π‘β€˜(π‘Ž βˆ’ 𝑦)) ≀ ((π‘β€˜π‘Ž) + (π‘β€˜π‘¦))))
74 oveq2 7417 . . . . . . . 8 (𝑦 = 𝑏 β†’ (π‘Ž βˆ’ 𝑦) = (π‘Ž βˆ’ 𝑏))
7574fveq2d 6896 . . . . . . 7 (𝑦 = 𝑏 β†’ (π‘β€˜(π‘Ž βˆ’ 𝑦)) = (π‘β€˜(π‘Ž βˆ’ 𝑏)))
76 fveq2 6892 . . . . . . . 8 (𝑦 = 𝑏 β†’ (π‘β€˜π‘¦) = (π‘β€˜π‘))
7776oveq2d 7425 . . . . . . 7 (𝑦 = 𝑏 β†’ ((π‘β€˜π‘Ž) + (π‘β€˜π‘¦)) = ((π‘β€˜π‘Ž) + (π‘β€˜π‘)))
7875, 77breq12d 5162 . . . . . 6 (𝑦 = 𝑏 β†’ ((π‘β€˜(π‘Ž βˆ’ 𝑦)) ≀ ((π‘β€˜π‘Ž) + (π‘β€˜π‘¦)) ↔ (π‘β€˜(π‘Ž βˆ’ 𝑏)) ≀ ((π‘β€˜π‘Ž) + (π‘β€˜π‘))))
7973, 78rspc2va 3624 . . . . 5 (((π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋) ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))) β†’ (π‘β€˜(π‘Ž βˆ’ 𝑏)) ≀ ((π‘β€˜π‘Ž) + (π‘β€˜π‘)))
8079ancoms 460 . . . 4 ((βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦)) ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ (π‘β€˜(π‘Ž βˆ’ 𝑏)) ≀ ((π‘β€˜π‘Ž) + (π‘β€˜π‘)))
8170, 80sylan 581 . . 3 (((𝑁:π‘‹βŸΆβ„ ∧ (𝐺 ∈ Grp ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))) ∧ (π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋)) β†’ (π‘β€˜(π‘Ž βˆ’ 𝑏)) ≀ ((π‘β€˜π‘Ž) + (π‘β€˜π‘)))
821, 2, 39, 27, 57, 58, 67, 81tngngpd 24170 . 2 ((𝑁:π‘‹βŸΆβ„ ∧ (𝐺 ∈ Grp ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))) β†’ 𝑇 ∈ NrmGrp)
8356, 82impbida 800 1 (𝑁:π‘‹βŸΆβ„ β†’ (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ βˆ€π‘₯ ∈ 𝑋 (((π‘β€˜π‘₯) = 0 ↔ π‘₯ = 0 ) ∧ βˆ€π‘¦ ∈ 𝑋 (π‘β€˜(π‘₯ βˆ’ 𝑦)) ≀ ((π‘β€˜π‘₯) + (π‘β€˜π‘¦))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  Vcvv 3475   class class class wbr 5149  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  β„cr 11109  0cc0 11110   + caddc 11113   ≀ cle 11249  Basecbs 17144  +gcplusg 17197  distcds 17206  0gc0g 17385  Grpcgrp 18819  -gcsg 18821  Metcmet 20930  normcnm 24085  NrmGrpcngp 24086   toNrmGrp ctng 24087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-plusg 17210  df-tset 17216  df-ds 17219  df-rest 17368  df-topn 17369  df-0g 17387  df-topgen 17389  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-sbg 18824  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-xms 23826  df-ms 23827  df-nm 24091  df-ngp 24092  df-tng 24093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator