Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1vallem Structured version   Visualization version   GIF version

Theorem hdmap1vallem 39738
Description: Value of preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1val.h 𝐻 = (LHyp‘𝐾)
hdmap1fval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1fval.v 𝑉 = (Base‘𝑈)
hdmap1fval.s = (-g𝑈)
hdmap1fval.o 0 = (0g𝑈)
hdmap1fval.n 𝑁 = (LSpan‘𝑈)
hdmap1fval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1fval.d 𝐷 = (Base‘𝐶)
hdmap1fval.r 𝑅 = (-g𝐶)
hdmap1fval.q 𝑄 = (0g𝐶)
hdmap1fval.j 𝐽 = (LSpan‘𝐶)
hdmap1fval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1fval.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1fval.k (𝜑 → (𝐾𝐴𝑊𝐻))
hdmap1val.t (𝜑𝑇 ∈ ((𝑉 × 𝐷) × 𝑉))
Assertion
Ref Expression
hdmap1vallem (𝜑 → (𝐼𝑇) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
Distinct variable groups:   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑈,   ,𝑉   𝑇,
Allowed substitution hints:   𝜑()   𝐴()   𝑄()   𝑅()   𝐻()   𝐼()   𝐾()   ()   𝑊()   0 ()

Proof of Theorem hdmap1vallem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hdmap1val.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1fval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1fval.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmap1fval.s . . . 4 = (-g𝑈)
5 hdmap1fval.o . . . 4 0 = (0g𝑈)
6 hdmap1fval.n . . . 4 𝑁 = (LSpan‘𝑈)
7 hdmap1fval.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1fval.d . . . 4 𝐷 = (Base‘𝐶)
9 hdmap1fval.r . . . 4 𝑅 = (-g𝐶)
10 hdmap1fval.q . . . 4 𝑄 = (0g𝐶)
11 hdmap1fval.j . . . 4 𝐽 = (LSpan‘𝐶)
12 hdmap1fval.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1fval.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1fval.k . . . 4 (𝜑 → (𝐾𝐴𝑊𝐻))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14hdmap1fval 39737 . . 3 (𝜑𝐼 = (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)}))))))
1615fveq1d 6758 . 2 (𝜑 → (𝐼𝑇) = ((𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))‘𝑇))
17 hdmap1val.t . . 3 (𝜑𝑇 ∈ ((𝑉 × 𝐷) × 𝑉))
1810fvexi 6770 . . . 4 𝑄 ∈ V
19 riotaex 7216 . . . 4 (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)}))) ∈ V
2018, 19ifex 4506 . . 3 if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))) ∈ V
21 fveqeq2 6765 . . . . 5 (𝑥 = 𝑇 → ((2nd𝑥) = 0 ↔ (2nd𝑇) = 0 ))
22 fveq2 6756 . . . . . . . . . 10 (𝑥 = 𝑇 → (2nd𝑥) = (2nd𝑇))
2322sneqd 4570 . . . . . . . . 9 (𝑥 = 𝑇 → {(2nd𝑥)} = {(2nd𝑇)})
2423fveq2d 6760 . . . . . . . 8 (𝑥 = 𝑇 → (𝑁‘{(2nd𝑥)}) = (𝑁‘{(2nd𝑇)}))
2524fveqeq2d 6764 . . . . . . 7 (𝑥 = 𝑇 → ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ↔ (𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{})))
26 2fveq3 6761 . . . . . . . . . . . 12 (𝑥 = 𝑇 → (1st ‘(1st𝑥)) = (1st ‘(1st𝑇)))
2726, 22oveq12d 7273 . . . . . . . . . . 11 (𝑥 = 𝑇 → ((1st ‘(1st𝑥)) (2nd𝑥)) = ((1st ‘(1st𝑇)) (2nd𝑇)))
2827sneqd 4570 . . . . . . . . . 10 (𝑥 = 𝑇 → {((1st ‘(1st𝑥)) (2nd𝑥))} = {((1st ‘(1st𝑇)) (2nd𝑇))})
2928fveq2d 6760 . . . . . . . . 9 (𝑥 = 𝑇 → (𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))}) = (𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))}))
3029fveq2d 6760 . . . . . . . 8 (𝑥 = 𝑇 → (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})))
31 2fveq3 6761 . . . . . . . . . . 11 (𝑥 = 𝑇 → (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑇)))
3231oveq1d 7270 . . . . . . . . . 10 (𝑥 = 𝑇 → ((2nd ‘(1st𝑥))𝑅) = ((2nd ‘(1st𝑇))𝑅))
3332sneqd 4570 . . . . . . . . 9 (𝑥 = 𝑇 → {((2nd ‘(1st𝑥))𝑅)} = {((2nd ‘(1st𝑇))𝑅)})
3433fveq2d 6760 . . . . . . . 8 (𝑥 = 𝑇 → (𝐽‘{((2nd ‘(1st𝑥))𝑅)}) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)}))
3530, 34eqeq12d 2754 . . . . . . 7 (𝑥 = 𝑇 → ((𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)}) ↔ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))
3625, 35anbi12d 630 . . . . . 6 (𝑥 = 𝑇 → (((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})) ↔ ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)}))))
3736riotabidv 7214 . . . . 5 (𝑥 = 𝑇 → (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)}))) = (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)}))))
3821, 37ifbieq2d 4482 . . . 4 (𝑥 = 𝑇 → if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
39 eqid 2738 . . . 4 (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)}))))) = (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
4038, 39fvmptg 6855 . . 3 ((𝑇 ∈ ((𝑉 × 𝐷) × 𝑉) ∧ if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))) ∈ V) → ((𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))‘𝑇) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
4117, 20, 40sylancl 585 . 2 (𝜑 → ((𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))‘𝑇) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
4216, 41eqtrd 2778 1 (𝜑 → (𝐼𝑇) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  ifcif 4456  {csn 4558  cmpt 5153   × cxp 5578  cfv 6418  crio 7211  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Basecbs 16840  0gc0g 17067  -gcsg 18494  LSpanclspn 20148  LHypclh 37925  DVecHcdvh 39019  LCDualclcd 39527  mapdcmpd 39565  HDMap1chdma1 39732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-hdmap1 39734
This theorem is referenced by:  hdmap1val  39739
  Copyright terms: Public domain W3C validator