Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1vallem Structured version   Visualization version   GIF version

Theorem hdmap1vallem 40260
Description: Value of preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1val.h 𝐻 = (LHyp‘𝐾)
hdmap1fval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1fval.v 𝑉 = (Base‘𝑈)
hdmap1fval.s = (-g𝑈)
hdmap1fval.o 0 = (0g𝑈)
hdmap1fval.n 𝑁 = (LSpan‘𝑈)
hdmap1fval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1fval.d 𝐷 = (Base‘𝐶)
hdmap1fval.r 𝑅 = (-g𝐶)
hdmap1fval.q 𝑄 = (0g𝐶)
hdmap1fval.j 𝐽 = (LSpan‘𝐶)
hdmap1fval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1fval.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1fval.k (𝜑 → (𝐾𝐴𝑊𝐻))
hdmap1val.t (𝜑𝑇 ∈ ((𝑉 × 𝐷) × 𝑉))
Assertion
Ref Expression
hdmap1vallem (𝜑 → (𝐼𝑇) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
Distinct variable groups:   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑈,   ,𝑉   𝑇,
Allowed substitution hints:   𝜑()   𝐴()   𝑄()   𝑅()   𝐻()   𝐼()   𝐾()   ()   𝑊()   0 ()

Proof of Theorem hdmap1vallem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hdmap1val.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1fval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1fval.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmap1fval.s . . . 4 = (-g𝑈)
5 hdmap1fval.o . . . 4 0 = (0g𝑈)
6 hdmap1fval.n . . . 4 𝑁 = (LSpan‘𝑈)
7 hdmap1fval.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1fval.d . . . 4 𝐷 = (Base‘𝐶)
9 hdmap1fval.r . . . 4 𝑅 = (-g𝐶)
10 hdmap1fval.q . . . 4 𝑄 = (0g𝐶)
11 hdmap1fval.j . . . 4 𝐽 = (LSpan‘𝐶)
12 hdmap1fval.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1fval.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1fval.k . . . 4 (𝜑 → (𝐾𝐴𝑊𝐻))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14hdmap1fval 40259 . . 3 (𝜑𝐼 = (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)}))))))
1615fveq1d 6844 . 2 (𝜑 → (𝐼𝑇) = ((𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))‘𝑇))
17 hdmap1val.t . . 3 (𝜑𝑇 ∈ ((𝑉 × 𝐷) × 𝑉))
1810fvexi 6856 . . . 4 𝑄 ∈ V
19 riotaex 7317 . . . 4 (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)}))) ∈ V
2018, 19ifex 4536 . . 3 if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))) ∈ V
21 fveqeq2 6851 . . . . 5 (𝑥 = 𝑇 → ((2nd𝑥) = 0 ↔ (2nd𝑇) = 0 ))
22 fveq2 6842 . . . . . . . . . 10 (𝑥 = 𝑇 → (2nd𝑥) = (2nd𝑇))
2322sneqd 4598 . . . . . . . . 9 (𝑥 = 𝑇 → {(2nd𝑥)} = {(2nd𝑇)})
2423fveq2d 6846 . . . . . . . 8 (𝑥 = 𝑇 → (𝑁‘{(2nd𝑥)}) = (𝑁‘{(2nd𝑇)}))
2524fveqeq2d 6850 . . . . . . 7 (𝑥 = 𝑇 → ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ↔ (𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{})))
26 2fveq3 6847 . . . . . . . . . . . 12 (𝑥 = 𝑇 → (1st ‘(1st𝑥)) = (1st ‘(1st𝑇)))
2726, 22oveq12d 7375 . . . . . . . . . . 11 (𝑥 = 𝑇 → ((1st ‘(1st𝑥)) (2nd𝑥)) = ((1st ‘(1st𝑇)) (2nd𝑇)))
2827sneqd 4598 . . . . . . . . . 10 (𝑥 = 𝑇 → {((1st ‘(1st𝑥)) (2nd𝑥))} = {((1st ‘(1st𝑇)) (2nd𝑇))})
2928fveq2d 6846 . . . . . . . . 9 (𝑥 = 𝑇 → (𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))}) = (𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))}))
3029fveq2d 6846 . . . . . . . 8 (𝑥 = 𝑇 → (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})))
31 2fveq3 6847 . . . . . . . . . . 11 (𝑥 = 𝑇 → (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑇)))
3231oveq1d 7372 . . . . . . . . . 10 (𝑥 = 𝑇 → ((2nd ‘(1st𝑥))𝑅) = ((2nd ‘(1st𝑇))𝑅))
3332sneqd 4598 . . . . . . . . 9 (𝑥 = 𝑇 → {((2nd ‘(1st𝑥))𝑅)} = {((2nd ‘(1st𝑇))𝑅)})
3433fveq2d 6846 . . . . . . . 8 (𝑥 = 𝑇 → (𝐽‘{((2nd ‘(1st𝑥))𝑅)}) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)}))
3530, 34eqeq12d 2752 . . . . . . 7 (𝑥 = 𝑇 → ((𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)}) ↔ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))
3625, 35anbi12d 631 . . . . . 6 (𝑥 = 𝑇 → (((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})) ↔ ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)}))))
3736riotabidv 7315 . . . . 5 (𝑥 = 𝑇 → (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)}))) = (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)}))))
3821, 37ifbieq2d 4512 . . . 4 (𝑥 = 𝑇 → if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
39 eqid 2736 . . . 4 (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)}))))) = (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
4038, 39fvmptg 6946 . . 3 ((𝑇 ∈ ((𝑉 × 𝐷) × 𝑉) ∧ if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))) ∈ V) → ((𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))‘𝑇) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
4117, 20, 40sylancl 586 . 2 (𝜑 → ((𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))‘𝑇) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
4216, 41eqtrd 2776 1 (𝜑 → (𝐼𝑇) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  ifcif 4486  {csn 4586  cmpt 5188   × cxp 5631  cfv 6496  crio 7312  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  Basecbs 17083  0gc0g 17321  -gcsg 18750  LSpanclspn 20432  LHypclh 38447  DVecHcdvh 39541  LCDualclcd 40049  mapdcmpd 40087  HDMap1chdma1 40254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-hdmap1 40256
This theorem is referenced by:  hdmap1val  40261
  Copyright terms: Public domain W3C validator