Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1vallem Structured version   Visualization version   GIF version

Theorem hdmap1vallem 40663
Description: Value of preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1val.h 𝐻 = (LHypβ€˜πΎ)
hdmap1fval.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
hdmap1fval.v 𝑉 = (Baseβ€˜π‘ˆ)
hdmap1fval.s βˆ’ = (-gβ€˜π‘ˆ)
hdmap1fval.o 0 = (0gβ€˜π‘ˆ)
hdmap1fval.n 𝑁 = (LSpanβ€˜π‘ˆ)
hdmap1fval.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
hdmap1fval.d 𝐷 = (Baseβ€˜πΆ)
hdmap1fval.r 𝑅 = (-gβ€˜πΆ)
hdmap1fval.q 𝑄 = (0gβ€˜πΆ)
hdmap1fval.j 𝐽 = (LSpanβ€˜πΆ)
hdmap1fval.m 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
hdmap1fval.i 𝐼 = ((HDMap1β€˜πΎ)β€˜π‘Š)
hdmap1fval.k (πœ‘ β†’ (𝐾 ∈ 𝐴 ∧ π‘Š ∈ 𝐻))
hdmap1val.t (πœ‘ β†’ 𝑇 ∈ ((𝑉 Γ— 𝐷) Γ— 𝑉))
Assertion
Ref Expression
hdmap1vallem (πœ‘ β†’ (πΌβ€˜π‘‡) = if((2nd β€˜π‘‡) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘‡)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘‡))π‘…β„Ž)})))))
Distinct variable groups:   𝐢,β„Ž   𝐷,β„Ž   β„Ž,𝐽   β„Ž,𝑀   β„Ž,𝑁   π‘ˆ,β„Ž   β„Ž,𝑉   𝑇,β„Ž
Allowed substitution hints:   πœ‘(β„Ž)   𝐴(β„Ž)   𝑄(β„Ž)   𝑅(β„Ž)   𝐻(β„Ž)   𝐼(β„Ž)   𝐾(β„Ž)   βˆ’ (β„Ž)   π‘Š(β„Ž)   0 (β„Ž)

Proof of Theorem hdmap1vallem
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 hdmap1val.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 hdmap1fval.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
3 hdmap1fval.v . . . 4 𝑉 = (Baseβ€˜π‘ˆ)
4 hdmap1fval.s . . . 4 βˆ’ = (-gβ€˜π‘ˆ)
5 hdmap1fval.o . . . 4 0 = (0gβ€˜π‘ˆ)
6 hdmap1fval.n . . . 4 𝑁 = (LSpanβ€˜π‘ˆ)
7 hdmap1fval.c . . . 4 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
8 hdmap1fval.d . . . 4 𝐷 = (Baseβ€˜πΆ)
9 hdmap1fval.r . . . 4 𝑅 = (-gβ€˜πΆ)
10 hdmap1fval.q . . . 4 𝑄 = (0gβ€˜πΆ)
11 hdmap1fval.j . . . 4 𝐽 = (LSpanβ€˜πΆ)
12 hdmap1fval.m . . . 4 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
13 hdmap1fval.i . . . 4 𝐼 = ((HDMap1β€˜πΎ)β€˜π‘Š)
14 hdmap1fval.k . . . 4 (πœ‘ β†’ (𝐾 ∈ 𝐴 ∧ π‘Š ∈ 𝐻))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14hdmap1fval 40662 . . 3 (πœ‘ β†’ 𝐼 = (π‘₯ ∈ ((𝑉 Γ— 𝐷) Γ— 𝑉) ↦ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)}))))))
1615fveq1d 6893 . 2 (πœ‘ β†’ (πΌβ€˜π‘‡) = ((π‘₯ ∈ ((𝑉 Γ— 𝐷) Γ— 𝑉) ↦ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)})))))β€˜π‘‡))
17 hdmap1val.t . . 3 (πœ‘ β†’ 𝑇 ∈ ((𝑉 Γ— 𝐷) Γ— 𝑉))
1810fvexi 6905 . . . 4 𝑄 ∈ V
19 riotaex 7368 . . . 4 (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘‡)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘‡))π‘…β„Ž)}))) ∈ V
2018, 19ifex 4578 . . 3 if((2nd β€˜π‘‡) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘‡)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘‡))π‘…β„Ž)})))) ∈ V
21 fveqeq2 6900 . . . . 5 (π‘₯ = 𝑇 β†’ ((2nd β€˜π‘₯) = 0 ↔ (2nd β€˜π‘‡) = 0 ))
22 fveq2 6891 . . . . . . . . . 10 (π‘₯ = 𝑇 β†’ (2nd β€˜π‘₯) = (2nd β€˜π‘‡))
2322sneqd 4640 . . . . . . . . 9 (π‘₯ = 𝑇 β†’ {(2nd β€˜π‘₯)} = {(2nd β€˜π‘‡)})
2423fveq2d 6895 . . . . . . . 8 (π‘₯ = 𝑇 β†’ (π‘β€˜{(2nd β€˜π‘₯)}) = (π‘β€˜{(2nd β€˜π‘‡)}))
2524fveqeq2d 6899 . . . . . . 7 (π‘₯ = 𝑇 β†’ ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ↔ (π‘€β€˜(π‘β€˜{(2nd β€˜π‘‡)})) = (π½β€˜{β„Ž})))
26 2fveq3 6896 . . . . . . . . . . . 12 (π‘₯ = 𝑇 β†’ (1st β€˜(1st β€˜π‘₯)) = (1st β€˜(1st β€˜π‘‡)))
2726, 22oveq12d 7426 . . . . . . . . . . 11 (π‘₯ = 𝑇 β†’ ((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯)) = ((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡)))
2827sneqd 4640 . . . . . . . . . 10 (π‘₯ = 𝑇 β†’ {((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))} = {((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡))})
2928fveq2d 6895 . . . . . . . . 9 (π‘₯ = 𝑇 β†’ (π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))}) = (π‘β€˜{((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡))}))
3029fveq2d 6895 . . . . . . . 8 (π‘₯ = 𝑇 β†’ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡))})))
31 2fveq3 6896 . . . . . . . . . . 11 (π‘₯ = 𝑇 β†’ (2nd β€˜(1st β€˜π‘₯)) = (2nd β€˜(1st β€˜π‘‡)))
3231oveq1d 7423 . . . . . . . . . 10 (π‘₯ = 𝑇 β†’ ((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž) = ((2nd β€˜(1st β€˜π‘‡))π‘…β„Ž))
3332sneqd 4640 . . . . . . . . 9 (π‘₯ = 𝑇 β†’ {((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)} = {((2nd β€˜(1st β€˜π‘‡))π‘…β„Ž)})
3433fveq2d 6895 . . . . . . . 8 (π‘₯ = 𝑇 β†’ (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)}) = (π½β€˜{((2nd β€˜(1st β€˜π‘‡))π‘…β„Ž)}))
3530, 34eqeq12d 2748 . . . . . . 7 (π‘₯ = 𝑇 β†’ ((π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)}) ↔ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘‡))π‘…β„Ž)})))
3625, 35anbi12d 631 . . . . . 6 (π‘₯ = 𝑇 β†’ (((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)})) ↔ ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘‡)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘‡))π‘…β„Ž)}))))
3736riotabidv 7366 . . . . 5 (π‘₯ = 𝑇 β†’ (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)}))) = (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘‡)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘‡))π‘…β„Ž)}))))
3821, 37ifbieq2d 4554 . . . 4 (π‘₯ = 𝑇 β†’ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)})))) = if((2nd β€˜π‘‡) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘‡)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘‡))π‘…β„Ž)})))))
39 eqid 2732 . . . 4 (π‘₯ ∈ ((𝑉 Γ— 𝐷) Γ— 𝑉) ↦ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)}))))) = (π‘₯ ∈ ((𝑉 Γ— 𝐷) Γ— 𝑉) ↦ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)})))))
4038, 39fvmptg 6996 . . 3 ((𝑇 ∈ ((𝑉 Γ— 𝐷) Γ— 𝑉) ∧ if((2nd β€˜π‘‡) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘‡)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘‡))π‘…β„Ž)})))) ∈ V) β†’ ((π‘₯ ∈ ((𝑉 Γ— 𝐷) Γ— 𝑉) ↦ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)})))))β€˜π‘‡) = if((2nd β€˜π‘‡) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘‡)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘‡))π‘…β„Ž)})))))
4117, 20, 40sylancl 586 . 2 (πœ‘ β†’ ((π‘₯ ∈ ((𝑉 Γ— 𝐷) Γ— 𝑉) ↦ if((2nd β€˜π‘₯) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘₯)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘₯)) βˆ’ (2nd β€˜π‘₯))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘₯))π‘…β„Ž)})))))β€˜π‘‡) = if((2nd β€˜π‘‡) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘‡)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘‡))π‘…β„Ž)})))))
4216, 41eqtrd 2772 1 (πœ‘ β†’ (πΌβ€˜π‘‡) = if((2nd β€˜π‘‡) = 0 , 𝑄, (β„©β„Ž ∈ 𝐷 ((π‘€β€˜(π‘β€˜{(2nd β€˜π‘‡)})) = (π½β€˜{β„Ž}) ∧ (π‘€β€˜(π‘β€˜{((1st β€˜(1st β€˜π‘‡)) βˆ’ (2nd β€˜π‘‡))})) = (π½β€˜{((2nd β€˜(1st β€˜π‘‡))π‘…β„Ž)})))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  ifcif 4528  {csn 4628   ↦ cmpt 5231   Γ— cxp 5674  β€˜cfv 6543  β„©crio 7363  (class class class)co 7408  1st c1st 7972  2nd c2nd 7973  Basecbs 17143  0gc0g 17384  -gcsg 18820  LSpanclspn 20581  LHypclh 38850  DVecHcdvh 39944  LCDualclcd 40452  mapdcmpd 40490  HDMap1chdma1 40657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-hdmap1 40659
This theorem is referenced by:  hdmap1val  40664
  Copyright terms: Public domain W3C validator