Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1euOLDN Structured version   Visualization version   GIF version

Theorem hdmap1euOLDN 41784
Description: Convert mapdh9aOLDN 41749 to use the HDMap1 notation. (Contributed by NM, 15-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmap1eu.h 𝐻 = (LHyp‘𝐾)
hdmap1eu.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1eu.v 𝑉 = (Base‘𝑈)
hdmap1eu.o 0 = (0g𝑈)
hdmap1eu.n 𝑁 = (LSpan‘𝑈)
hdmap1eu.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1eu.d 𝐷 = (Base‘𝐶)
hdmap1eu.l 𝐿 = (LSpan‘𝐶)
hdmap1eu.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1eu.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1eu.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1eu.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1eu.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1eu.f (𝜑𝐹𝐷)
hdmap1eu.t (𝜑𝑇𝑉)
Assertion
Ref Expression
hdmap1euOLDN (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝑦,𝑧,𝐶   𝑦,𝐷,𝑧   𝑦,𝐹,𝑧   𝑦,𝐿,𝑧   𝑦,𝑀,𝑧   𝑦,𝑁,𝑧   𝑦, 0 ,𝑧   𝑦,𝑇,𝑧   𝑦,𝑈,𝑧   𝑦,𝑉,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑦,𝑧)   𝐼(𝑦,𝑧)   𝐾(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem hdmap1euOLDN
Dummy variables 𝑔 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmap1eu.h . 2 𝐻 = (LHyp‘𝐾)
2 hdmap1eu.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1eu.v . 2 𝑉 = (Base‘𝑈)
4 eqid 2740 . 2 (-g𝑈) = (-g𝑈)
5 hdmap1eu.o . 2 0 = (0g𝑈)
6 hdmap1eu.n . 2 𝑁 = (LSpan‘𝑈)
7 hdmap1eu.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1eu.d . 2 𝐷 = (Base‘𝐶)
9 eqid 2740 . 2 (-g𝐶) = (-g𝐶)
10 eqid 2740 . 2 (0g𝐶) = (0g𝐶)
11 hdmap1eu.l . 2 𝐿 = (LSpan‘𝐶)
12 hdmap1eu.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1eu.i . 2 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1eu.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1eu.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
16 hdmap1eu.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
17 hdmap1eu.f . 2 (𝜑𝐹𝐷)
18 hdmap1eu.t . 2 (𝜑𝑇𝑉)
19 eqid 2740 . . 3 (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥))(-g𝑈)(2nd𝑥))})) = (𝐿‘{((2nd ‘(1st𝑥))(-g𝐶))}))))) = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥))(-g𝑈)(2nd𝑥))})) = (𝐿‘{((2nd ‘(1st𝑥))(-g𝐶))})))))
2019hdmap1cbv 41761 . 2 (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥))(-g𝑈)(2nd𝑥))})) = (𝐿‘{((2nd ‘(1st𝑥))(-g𝐶))}))))) = (𝑤 ∈ V ↦ if((2nd𝑤) = 0 , (0g𝐶), (𝑔𝐷 ((𝑀‘(𝑁‘{(2nd𝑤)})) = (𝐿‘{𝑔}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑤))(-g𝑈)(2nd𝑤))})) = (𝐿‘{((2nd ‘(1st𝑤))(-g𝐶)𝑔)})))))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20hdmap1eulemOLDN 41782 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  ∃!wreu 3386  Vcvv 3488  cdif 3973  ifcif 4548  {csn 4648  {cpr 4650  cotp 4656  cmpt 5249  cfv 6575  crio 7405  (class class class)co 7450  1st c1st 8030  2nd c2nd 8031  Basecbs 17260  0gc0g 17501  -gcsg 18977  LSpanclspn 20994  HLchlt 39308  LHypclh 39943  DVecHcdvh 41037  LCDualclcd 41545  mapdcmpd 41583  HDMap1chdma1 41750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-riotaBAD 38911
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-of 7716  df-om 7906  df-1st 8032  df-2nd 8033  df-tpos 8269  df-undef 8316  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-er 8765  df-map 8888  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-n0 12556  df-z 12642  df-uz 12906  df-fz 13570  df-struct 17196  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-plusg 17326  df-mulr 17327  df-sca 17329  df-vsca 17330  df-0g 17503  df-mre 17646  df-mrc 17647  df-acs 17649  df-proset 18367  df-poset 18385  df-plt 18402  df-lub 18418  df-glb 18419  df-join 18420  df-meet 18421  df-p0 18497  df-p1 18498  df-lat 18504  df-clat 18571  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-submnd 18821  df-grp 18978  df-minusg 18979  df-sbg 18980  df-subg 19165  df-cntz 19359  df-oppg 19388  df-lsm 19680  df-cmn 19826  df-abl 19827  df-mgp 20164  df-rng 20182  df-ur 20211  df-ring 20264  df-oppr 20362  df-dvdsr 20385  df-unit 20386  df-invr 20416  df-dvr 20429  df-nzr 20541  df-rlreg 20718  df-domn 20719  df-drng 20755  df-lmod 20884  df-lss 20955  df-lsp 20995  df-lvec 21127  df-lsatoms 38934  df-lshyp 38935  df-lcv 38977  df-lfl 39016  df-lkr 39044  df-ldual 39082  df-oposet 39134  df-ol 39136  df-oml 39137  df-covers 39224  df-ats 39225  df-atl 39256  df-cvlat 39280  df-hlat 39309  df-llines 39457  df-lplanes 39458  df-lvols 39459  df-lines 39460  df-psubsp 39462  df-pmap 39463  df-padd 39755  df-lhyp 39947  df-laut 39948  df-ldil 40063  df-ltrn 40064  df-trl 40118  df-tgrp 40702  df-tendo 40714  df-edring 40716  df-dveca 40962  df-disoa 40988  df-dvech 41038  df-dib 41098  df-dic 41132  df-dih 41188  df-doch 41307  df-djh 41354  df-lcdual 41546  df-mapd 41584  df-hdmap1 41752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator