Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1euOLDN Structured version   Visualization version   GIF version

Theorem hdmap1euOLDN 41814
Description: Convert mapdh9aOLDN 41779 to use the HDMap1 notation. (Contributed by NM, 15-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmap1eu.h 𝐻 = (LHyp‘𝐾)
hdmap1eu.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1eu.v 𝑉 = (Base‘𝑈)
hdmap1eu.o 0 = (0g𝑈)
hdmap1eu.n 𝑁 = (LSpan‘𝑈)
hdmap1eu.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1eu.d 𝐷 = (Base‘𝐶)
hdmap1eu.l 𝐿 = (LSpan‘𝐶)
hdmap1eu.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1eu.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1eu.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1eu.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1eu.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1eu.f (𝜑𝐹𝐷)
hdmap1eu.t (𝜑𝑇𝑉)
Assertion
Ref Expression
hdmap1euOLDN (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝑦,𝑧,𝐶   𝑦,𝐷,𝑧   𝑦,𝐹,𝑧   𝑦,𝐿,𝑧   𝑦,𝑀,𝑧   𝑦,𝑁,𝑧   𝑦, 0 ,𝑧   𝑦,𝑇,𝑧   𝑦,𝑈,𝑧   𝑦,𝑉,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑦,𝑧)   𝐼(𝑦,𝑧)   𝐾(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem hdmap1euOLDN
Dummy variables 𝑔 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmap1eu.h . 2 𝐻 = (LHyp‘𝐾)
2 hdmap1eu.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1eu.v . 2 𝑉 = (Base‘𝑈)
4 eqid 2730 . 2 (-g𝑈) = (-g𝑈)
5 hdmap1eu.o . 2 0 = (0g𝑈)
6 hdmap1eu.n . 2 𝑁 = (LSpan‘𝑈)
7 hdmap1eu.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1eu.d . 2 𝐷 = (Base‘𝐶)
9 eqid 2730 . 2 (-g𝐶) = (-g𝐶)
10 eqid 2730 . 2 (0g𝐶) = (0g𝐶)
11 hdmap1eu.l . 2 𝐿 = (LSpan‘𝐶)
12 hdmap1eu.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1eu.i . 2 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1eu.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1eu.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
16 hdmap1eu.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
17 hdmap1eu.f . 2 (𝜑𝐹𝐷)
18 hdmap1eu.t . 2 (𝜑𝑇𝑉)
19 eqid 2730 . . 3 (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥))(-g𝑈)(2nd𝑥))})) = (𝐿‘{((2nd ‘(1st𝑥))(-g𝐶))}))))) = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥))(-g𝑈)(2nd𝑥))})) = (𝐿‘{((2nd ‘(1st𝑥))(-g𝐶))})))))
2019hdmap1cbv 41791 . 2 (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥))(-g𝑈)(2nd𝑥))})) = (𝐿‘{((2nd ‘(1st𝑥))(-g𝐶))}))))) = (𝑤 ∈ V ↦ if((2nd𝑤) = 0 , (0g𝐶), (𝑔𝐷 ((𝑀‘(𝑁‘{(2nd𝑤)})) = (𝐿‘{𝑔}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑤))(-g𝑈)(2nd𝑤))})) = (𝐿‘{((2nd ‘(1st𝑤))(-g𝐶)𝑔)})))))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20hdmap1eulemOLDN 41812 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  ∃!wreu 3354  Vcvv 3450  cdif 3913  ifcif 4490  {csn 4591  {cpr 4593  cotp 4599  cmpt 5190  cfv 6513  crio 7345  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  Basecbs 17185  0gc0g 17408  -gcsg 18873  LSpanclspn 20883  HLchlt 39338  LHypclh 39973  DVecHcdvh 41067  LCDualclcd 41575  mapdcmpd 41613  HDMap1chdma1 41780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-riotaBAD 38941
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-undef 8254  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-0g 17410  df-mre 17553  df-mrc 17554  df-acs 17556  df-proset 18261  df-poset 18280  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-cntz 19255  df-oppg 19284  df-lsm 19572  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-dvr 20316  df-nzr 20428  df-rlreg 20609  df-domn 20610  df-drng 20646  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lvec 21016  df-lsatoms 38964  df-lshyp 38965  df-lcv 39007  df-lfl 39046  df-lkr 39074  df-ldual 39112  df-oposet 39164  df-ol 39166  df-oml 39167  df-covers 39254  df-ats 39255  df-atl 39286  df-cvlat 39310  df-hlat 39339  df-llines 39487  df-lplanes 39488  df-lvols 39489  df-lines 39490  df-psubsp 39492  df-pmap 39493  df-padd 39785  df-lhyp 39977  df-laut 39978  df-ldil 40093  df-ltrn 40094  df-trl 40148  df-tgrp 40732  df-tendo 40744  df-edring 40746  df-dveca 40992  df-disoa 41018  df-dvech 41068  df-dib 41128  df-dic 41162  df-dih 41218  df-doch 41337  df-djh 41384  df-lcdual 41576  df-mapd 41614  df-hdmap1 41782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator