Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1euOLDN Structured version   Visualization version   GIF version

Theorem hdmap1euOLDN 39083
Description: Convert mapdh9aOLDN 39048 to use the HDMap1 notation. (Contributed by NM, 15-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hdmap1eu.h 𝐻 = (LHyp‘𝐾)
hdmap1eu.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1eu.v 𝑉 = (Base‘𝑈)
hdmap1eu.o 0 = (0g𝑈)
hdmap1eu.n 𝑁 = (LSpan‘𝑈)
hdmap1eu.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1eu.d 𝐷 = (Base‘𝐶)
hdmap1eu.l 𝐿 = (LSpan‘𝐶)
hdmap1eu.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1eu.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1eu.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1eu.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1eu.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1eu.f (𝜑𝐹𝐷)
hdmap1eu.t (𝜑𝑇𝑉)
Assertion
Ref Expression
hdmap1euOLDN (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Distinct variable groups:   𝑦,𝑧,𝐶   𝑦,𝐷,𝑧   𝑦,𝐹,𝑧   𝑦,𝐿,𝑧   𝑦,𝑀,𝑧   𝑦,𝑁,𝑧   𝑦, 0 ,𝑧   𝑦,𝑇,𝑧   𝑦,𝑈,𝑧   𝑦,𝑉,𝑧   𝑦,𝑋,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐻(𝑦,𝑧)   𝐼(𝑦,𝑧)   𝐾(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem hdmap1euOLDN
Dummy variables 𝑔 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hdmap1eu.h . 2 𝐻 = (LHyp‘𝐾)
2 hdmap1eu.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1eu.v . 2 𝑉 = (Base‘𝑈)
4 eqid 2822 . 2 (-g𝑈) = (-g𝑈)
5 hdmap1eu.o . 2 0 = (0g𝑈)
6 hdmap1eu.n . 2 𝑁 = (LSpan‘𝑈)
7 hdmap1eu.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1eu.d . 2 𝐷 = (Base‘𝐶)
9 eqid 2822 . 2 (-g𝐶) = (-g𝐶)
10 eqid 2822 . 2 (0g𝐶) = (0g𝐶)
11 hdmap1eu.l . 2 𝐿 = (LSpan‘𝐶)
12 hdmap1eu.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1eu.i . 2 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1eu.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 hdmap1eu.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
16 hdmap1eu.x . 2 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
17 hdmap1eu.f . 2 (𝜑𝐹𝐷)
18 hdmap1eu.t . 2 (𝜑𝑇𝑉)
19 eqid 2822 . . 3 (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥))(-g𝑈)(2nd𝑥))})) = (𝐿‘{((2nd ‘(1st𝑥))(-g𝐶))}))))) = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥))(-g𝑈)(2nd𝑥))})) = (𝐿‘{((2nd ‘(1st𝑥))(-g𝐶))})))))
2019hdmap1cbv 39060 . 2 (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , (0g𝐶), (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐿‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥))(-g𝑈)(2nd𝑥))})) = (𝐿‘{((2nd ‘(1st𝑥))(-g𝐶))}))))) = (𝑤 ∈ V ↦ if((2nd𝑤) = 0 , (0g𝐶), (𝑔𝐷 ((𝑀‘(𝑁‘{(2nd𝑤)})) = (𝐿‘{𝑔}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑤))(-g𝑈)(2nd𝑤))})) = (𝐿‘{((2nd ‘(1st𝑤))(-g𝐶)𝑔)})))))
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20hdmap1eulemOLDN 39081 1 (𝜑 → ∃!𝑦𝐷𝑧𝑉𝑧 ∈ (𝑁‘{𝑋, 𝑇}) → 𝑦 = (𝐼‘⟨𝑧, (𝐼‘⟨𝑋, 𝐹, 𝑧⟩), 𝑇⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2114  wral 3130  ∃!wreu 3132  Vcvv 3469  cdif 3905  ifcif 4439  {csn 4539  {cpr 4541  cotp 4547  cmpt 5122  cfv 6334  crio 7097  (class class class)co 7140  1st c1st 7673  2nd c2nd 7674  Basecbs 16474  0gc0g 16704  -gcsg 18096  LSpanclspn 19734  HLchlt 36608  LHypclh 37242  DVecHcdvh 38336  LCDualclcd 38844  mapdcmpd 38882  HDMap1chdma1 39049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 36211
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-ot 4548  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-tpos 7879  df-undef 7926  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16476  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-sca 16572  df-vsca 16573  df-0g 16706  df-mre 16848  df-mrc 16849  df-acs 16851  df-proset 17529  df-poset 17547  df-plt 17559  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-p0 17640  df-p1 17641  df-lat 17647  df-clat 17709  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-grp 18097  df-minusg 18098  df-sbg 18099  df-subg 18267  df-cntz 18438  df-oppg 18465  df-lsm 18752  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-ring 19290  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19495  df-lmod 19627  df-lss 19695  df-lsp 19735  df-lvec 19866  df-lsatoms 36234  df-lshyp 36235  df-lcv 36277  df-lfl 36316  df-lkr 36344  df-ldual 36382  df-oposet 36434  df-ol 36436  df-oml 36437  df-covers 36524  df-ats 36525  df-atl 36556  df-cvlat 36580  df-hlat 36609  df-llines 36756  df-lplanes 36757  df-lvols 36758  df-lines 36759  df-psubsp 36761  df-pmap 36762  df-padd 37054  df-lhyp 37246  df-laut 37247  df-ldil 37362  df-ltrn 37363  df-trl 37417  df-tgrp 38001  df-tendo 38013  df-edring 38015  df-dveca 38261  df-disoa 38287  df-dvech 38337  df-dib 38397  df-dic 38431  df-dih 38487  df-doch 38606  df-djh 38653  df-lcdual 38845  df-mapd 38883  df-hdmap1 39051
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator