Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdhvmap | Structured version Visualization version GIF version |
Description: Relationship between mapd and HVMap, which can be used to satisfy the last hypothesis of mapdpg 39493. Equation 10 of [Baer] p. 48. (Contributed by NM, 29-Mar-2015.) |
Ref | Expression |
---|---|
mapdhvmap.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdhvmap.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdhvmap.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdhvmap.z | ⊢ 0 = (0g‘𝑈) |
mapdhvmap.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdhvmap.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdhvmap.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdhvmap.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdhvmap.p | ⊢ 𝑃 = ((HVMap‘𝐾)‘𝑊) |
mapdhvmap.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdhvmap.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
Ref | Expression |
---|---|
mapdhvmap | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{(𝑃‘𝑋)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdhvmap.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2739 | . . 3 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
3 | mapdhvmap.m | . . 3 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
4 | mapdhvmap.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | mapdhvmap.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
6 | mapdhvmap.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | eqid 2739 | . . 3 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
8 | eqid 2739 | . . 3 ⊢ (LKer‘𝑈) = (LKer‘𝑈) | |
9 | eqid 2739 | . . 3 ⊢ (LDual‘𝑈) = (LDual‘𝑈) | |
10 | eqid 2739 | . . 3 ⊢ (LSpan‘(LDual‘𝑈)) = (LSpan‘(LDual‘𝑈)) | |
11 | mapdhvmap.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
12 | mapdhvmap.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
13 | 12 | eldifad 3895 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
14 | mapdhvmap.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
15 | mapdhvmap.p | . . . 4 ⊢ 𝑃 = ((HVMap‘𝐾)‘𝑊) | |
16 | 1, 4, 5, 14, 7, 15, 11, 12 | hvmaplfl 39554 | . . 3 ⊢ (𝜑 → (𝑃‘𝑋) ∈ (LFnl‘𝑈)) |
17 | 1, 2, 4, 5, 14, 8, 15, 11, 12 | hvmaplkr 39555 | . . 3 ⊢ (𝜑 → ((LKer‘𝑈)‘(𝑃‘𝑋)) = (((ocH‘𝐾)‘𝑊)‘{𝑋})) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 16, 17 | mapdsn3 39430 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = ((LSpan‘(LDual‘𝑈))‘{(𝑃‘𝑋)})) |
19 | mapdhvmap.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
20 | eqid 2739 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
21 | mapdhvmap.j | . . 3 ⊢ 𝐽 = (LSpan‘𝐶) | |
22 | eqid 2739 | . . . . . 6 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
23 | 1, 4, 5, 14, 19, 20, 22, 15, 11, 12 | hvmapcl2 39553 | . . . . 5 ⊢ (𝜑 → (𝑃‘𝑋) ∈ ((Base‘𝐶) ∖ {(0g‘𝐶)})) |
24 | 23 | eldifad 3895 | . . . 4 ⊢ (𝜑 → (𝑃‘𝑋) ∈ (Base‘𝐶)) |
25 | 24 | snssd 4738 | . . 3 ⊢ (𝜑 → {(𝑃‘𝑋)} ⊆ (Base‘𝐶)) |
26 | 1, 4, 9, 10, 19, 20, 21, 11, 25 | lcdlsp 39408 | . 2 ⊢ (𝜑 → (𝐽‘{(𝑃‘𝑋)}) = ((LSpan‘(LDual‘𝑈))‘{(𝑃‘𝑋)})) |
27 | 18, 26 | eqtr4d 2782 | 1 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{(𝑃‘𝑋)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∖ cdif 3880 {csn 4557 ‘cfv 6400 Basecbs 16792 0gc0g 16976 LSpanclspn 20040 LFnlclfn 36844 LKerclk 36872 LDualcld 36910 HLchlt 37137 LHypclh 37771 DVecHcdvh 38865 ocHcoch 39134 LCDualclcd 39373 mapdcmpd 39411 HVMapchvm 39543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 ax-riotaBAD 36740 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-iin 4923 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-of 7490 df-om 7666 df-1st 7782 df-2nd 7783 df-tpos 7991 df-undef 8038 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-er 8414 df-map 8533 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-nn 11860 df-2 11922 df-3 11923 df-4 11924 df-5 11925 df-6 11926 df-n0 12120 df-z 12206 df-uz 12468 df-fz 13125 df-struct 16732 df-sets 16749 df-slot 16767 df-ndx 16777 df-base 16793 df-ress 16817 df-plusg 16847 df-mulr 16848 df-sca 16850 df-vsca 16851 df-0g 16978 df-mre 17121 df-mrc 17122 df-acs 17124 df-proset 17834 df-poset 17852 df-plt 17868 df-lub 17884 df-glb 17885 df-join 17886 df-meet 17887 df-p0 17963 df-p1 17964 df-lat 17970 df-clat 18037 df-mgm 18146 df-sgrp 18195 df-mnd 18206 df-submnd 18251 df-grp 18400 df-minusg 18401 df-sbg 18402 df-subg 18572 df-cntz 18743 df-oppg 18770 df-lsm 19057 df-cmn 19204 df-abl 19205 df-mgp 19537 df-ur 19549 df-ring 19596 df-oppr 19673 df-dvdsr 19691 df-unit 19692 df-invr 19722 df-dvr 19733 df-drng 19801 df-lmod 19933 df-lss 20001 df-lsp 20041 df-lvec 20172 df-lsatoms 36763 df-lshyp 36764 df-lcv 36806 df-lfl 36845 df-lkr 36873 df-ldual 36911 df-oposet 36963 df-ol 36965 df-oml 36966 df-covers 37053 df-ats 37054 df-atl 37085 df-cvlat 37109 df-hlat 37138 df-llines 37285 df-lplanes 37286 df-lvols 37287 df-lines 37288 df-psubsp 37290 df-pmap 37291 df-padd 37583 df-lhyp 37775 df-laut 37776 df-ldil 37891 df-ltrn 37892 df-trl 37946 df-tgrp 38530 df-tendo 38542 df-edring 38544 df-dveca 38790 df-disoa 38816 df-dvech 38866 df-dib 38926 df-dic 38960 df-dih 39016 df-doch 39135 df-djh 39182 df-lcdual 39374 df-mapd 39412 df-hvmap 39544 |
This theorem is referenced by: hdmapcl 39617 hdmapval2lem 39618 hdmapval0 39620 hdmapeveclem 39621 hdmapval3lemN 39624 hdmap10lem 39626 hdmap11lem1 39628 |
Copyright terms: Public domain | W3C validator |