| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > counop | Structured version Visualization version GIF version | ||
| Description: The composition of two unitary operators is unitary. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| counop | ⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇) ∈ UniOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopf1o 31936 | . . . 4 ⊢ (𝑆 ∈ UniOp → 𝑆: ℋ–1-1-onto→ ℋ) | |
| 2 | unopf1o 31936 | . . . 4 ⊢ (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ) | |
| 3 | f1oco 6870 | . . . 4 ⊢ ((𝑆: ℋ–1-1-onto→ ℋ ∧ 𝑇: ℋ–1-1-onto→ ℋ) → (𝑆 ∘ 𝑇): ℋ–1-1-onto→ ℋ) | |
| 4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇): ℋ–1-1-onto→ ℋ) |
| 5 | f1ofo 6854 | . . 3 ⊢ ((𝑆 ∘ 𝑇): ℋ–1-1-onto→ ℋ → (𝑆 ∘ 𝑇): ℋ–onto→ ℋ) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇): ℋ–onto→ ℋ) |
| 7 | f1of 6847 | . . . . . . . 8 ⊢ (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ⟶ ℋ) | |
| 8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ) |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → 𝑇: ℋ⟶ ℋ) |
| 10 | simpl 482 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ) | |
| 11 | fvco3 7007 | . . . . . 6 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . . 5 ⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑦 ∈ ℋ) | |
| 14 | fvco3 7007 | . . . . . 6 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆 ∘ 𝑇)‘𝑦) = (𝑆‘(𝑇‘𝑦))) | |
| 15 | 9, 13, 14 | syl2an 596 | . . . . 5 ⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆 ∘ 𝑇)‘𝑦) = (𝑆‘(𝑇‘𝑦))) |
| 16 | 12, 15 | oveq12d 7450 | . . . 4 ⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih ((𝑆 ∘ 𝑇)‘𝑦)) = ((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦)))) |
| 17 | ffvelcdm 7100 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
| 18 | ffvelcdm 7100 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑦) ∈ ℋ) | |
| 19 | 17, 18 | anim12dan 619 | . . . . . . 7 ⊢ ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ)) |
| 20 | 8, 19 | sylan 580 | . . . . . 6 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ)) |
| 21 | unop 31935 | . . . . . . 7 ⊢ ((𝑆 ∈ UniOp ∧ (𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) | |
| 22 | 21 | 3expb 1120 | . . . . . 6 ⊢ ((𝑆 ∈ UniOp ∧ ((𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ)) → ((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
| 23 | 20, 22 | sylan2 593 | . . . . 5 ⊢ ((𝑆 ∈ UniOp ∧ (𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) → ((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
| 24 | 23 | anassrs 467 | . . . 4 ⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
| 25 | unop 31935 | . . . . . 6 ⊢ ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) | |
| 26 | 25 | 3expb 1120 | . . . . 5 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 27 | 26 | adantll 714 | . . . 4 ⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 28 | 16, 24, 27 | 3eqtrd 2780 | . . 3 ⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih ((𝑆 ∘ 𝑇)‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 29 | 28 | ralrimivva 3201 | . 2 ⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆 ∘ 𝑇)‘𝑥) ·ih ((𝑆 ∘ 𝑇)‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 30 | elunop 31892 | . 2 ⊢ ((𝑆 ∘ 𝑇) ∈ UniOp ↔ ((𝑆 ∘ 𝑇): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆 ∘ 𝑇)‘𝑥) ·ih ((𝑆 ∘ 𝑇)‘𝑦)) = (𝑥 ·ih 𝑦))) | |
| 31 | 6, 29, 30 | sylanbrc 583 | 1 ⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇) ∈ UniOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∘ ccom 5688 ⟶wf 6556 –onto→wfo 6558 –1-1-onto→wf1o 6559 ‘cfv 6560 (class class class)co 7432 ℋchba 30939 ·ih csp 30942 UniOpcuo 30969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-hilex 31019 ax-hfvadd 31020 ax-hvcom 31021 ax-hvass 31022 ax-hv0cl 31023 ax-hvaddid 31024 ax-hfvmul 31025 ax-hvmulid 31026 ax-hvdistr2 31029 ax-hvmul0 31030 ax-hfi 31099 ax-his1 31102 ax-his2 31103 ax-his3 31104 ax-his4 31105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-cj 15139 df-re 15140 df-im 15141 df-hvsub 30991 df-unop 31863 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |