HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  counop Structured version   Visualization version   GIF version

Theorem counop 29700
Description: The composition of two unitary operators is unitary. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
counop ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇) ∈ UniOp)

Proof of Theorem counop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopf1o 29695 . . . 4 (𝑆 ∈ UniOp → 𝑆: ℋ–1-1-onto→ ℋ)
2 unopf1o 29695 . . . 4 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
3 f1oco 6639 . . . 4 ((𝑆: ℋ–1-1-onto→ ℋ ∧ 𝑇: ℋ–1-1-onto→ ℋ) → (𝑆𝑇): ℋ–1-1-onto→ ℋ)
41, 2, 3syl2an 597 . . 3 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇): ℋ–1-1-onto→ ℋ)
5 f1ofo 6624 . . 3 ((𝑆𝑇): ℋ–1-1-onto→ ℋ → (𝑆𝑇): ℋ–onto→ ℋ)
64, 5syl 17 . 2 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇): ℋ–onto→ ℋ)
7 f1of 6617 . . . . . . . 8 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ⟶ ℋ)
82, 7syl 17 . . . . . . 7 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
98adantl 484 . . . . . 6 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → 𝑇: ℋ⟶ ℋ)
10 simpl 485 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ)
11 fvco3 6762 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
129, 10, 11syl2an 597 . . . . 5 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
13 simpr 487 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑦 ∈ ℋ)
14 fvco3 6762 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆𝑇)‘𝑦) = (𝑆‘(𝑇𝑦)))
159, 13, 14syl2an 597 . . . . 5 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑇)‘𝑦) = (𝑆‘(𝑇𝑦)))
1612, 15oveq12d 7176 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))))
17 ffvelrn 6851 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
18 ffvelrn 6851 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
1917, 18anim12dan 620 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
208, 19sylan 582 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
21 unop 29694 . . . . . . 7 ((𝑆 ∈ UniOp ∧ (𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
22213expb 1116 . . . . . 6 ((𝑆 ∈ UniOp ∧ ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ)) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
2320, 22sylan2 594 . . . . 5 ((𝑆 ∈ UniOp ∧ (𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
2423anassrs 470 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
25 unop 29694 . . . . . 6 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
26253expb 1116 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
2726adantll 712 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
2816, 24, 273eqtrd 2862 . . 3 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦))
2928ralrimivva 3193 . 2 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦))
30 elunop 29651 . 2 ((𝑆𝑇) ∈ UniOp ↔ ((𝑆𝑇): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦)))
316, 29, 30sylanbrc 585 1 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇) ∈ UniOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  ccom 5561  wf 6353  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  chba 28698   ·ih csp 28701  UniOpcuo 28728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-hilex 28778  ax-hfvadd 28779  ax-hvcom 28780  ax-hvass 28781  ax-hv0cl 28782  ax-hvaddid 28783  ax-hfvmul 28784  ax-hvmulid 28785  ax-hvdistr2 28788  ax-hvmul0 28789  ax-hfi 28858  ax-his1 28861  ax-his2 28862  ax-his3 28863  ax-his4 28864
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-2 11703  df-cj 14460  df-re 14461  df-im 14462  df-hvsub 28750  df-unop 29622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator