HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  counop Structured version   Visualization version   GIF version

Theorem counop 30863
Description: The composition of two unitary operators is unitary. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
counop ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇) ∈ UniOp)

Proof of Theorem counop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopf1o 30858 . . . 4 (𝑆 ∈ UniOp → 𝑆: ℋ–1-1-onto→ ℋ)
2 unopf1o 30858 . . . 4 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
3 f1oco 6807 . . . 4 ((𝑆: ℋ–1-1-onto→ ℋ ∧ 𝑇: ℋ–1-1-onto→ ℋ) → (𝑆𝑇): ℋ–1-1-onto→ ℋ)
41, 2, 3syl2an 596 . . 3 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇): ℋ–1-1-onto→ ℋ)
5 f1ofo 6791 . . 3 ((𝑆𝑇): ℋ–1-1-onto→ ℋ → (𝑆𝑇): ℋ–onto→ ℋ)
64, 5syl 17 . 2 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇): ℋ–onto→ ℋ)
7 f1of 6784 . . . . . . . 8 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ⟶ ℋ)
82, 7syl 17 . . . . . . 7 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
98adantl 482 . . . . . 6 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → 𝑇: ℋ⟶ ℋ)
10 simpl 483 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ)
11 fvco3 6940 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
129, 10, 11syl2an 596 . . . . 5 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
13 simpr 485 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑦 ∈ ℋ)
14 fvco3 6940 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆𝑇)‘𝑦) = (𝑆‘(𝑇𝑦)))
159, 13, 14syl2an 596 . . . . 5 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑇)‘𝑦) = (𝑆‘(𝑇𝑦)))
1612, 15oveq12d 7375 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))))
17 ffvelcdm 7032 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
18 ffvelcdm 7032 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
1917, 18anim12dan 619 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
208, 19sylan 580 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
21 unop 30857 . . . . . . 7 ((𝑆 ∈ UniOp ∧ (𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
22213expb 1120 . . . . . 6 ((𝑆 ∈ UniOp ∧ ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ)) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
2320, 22sylan2 593 . . . . 5 ((𝑆 ∈ UniOp ∧ (𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
2423anassrs 468 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
25 unop 30857 . . . . . 6 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
26253expb 1120 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
2726adantll 712 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
2816, 24, 273eqtrd 2780 . . 3 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦))
2928ralrimivva 3197 . 2 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦))
30 elunop 30814 . 2 ((𝑆𝑇) ∈ UniOp ↔ ((𝑆𝑇): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦)))
316, 29, 30sylanbrc 583 1 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇) ∈ UniOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  ccom 5637  wf 6492  ontowfo 6494  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  chba 29861   ·ih csp 29864  UniOpcuo 29891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvdistr2 29951  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his2 30025  ax-his3 30026  ax-his4 30027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-2 12216  df-cj 14984  df-re 14985  df-im 14986  df-hvsub 29913  df-unop 30785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator