Step | Hyp | Ref
| Expression |
1 | | unopf1o 29812 |
. . . 4
⊢ (𝑆 ∈ UniOp → 𝑆: ℋ–1-1-onto→
ℋ) |
2 | | unopf1o 29812 |
. . . 4
⊢ (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→
ℋ) |
3 | | f1oco 6629 |
. . . 4
⊢ ((𝑆: ℋ–1-1-onto→
ℋ ∧ 𝑇:
ℋ–1-1-onto→ ℋ) → (𝑆 ∘ 𝑇): ℋ–1-1-onto→
ℋ) |
4 | 1, 2, 3 | syl2an 598 |
. . 3
⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇): ℋ–1-1-onto→
ℋ) |
5 | | f1ofo 6614 |
. . 3
⊢ ((𝑆 ∘ 𝑇): ℋ–1-1-onto→
ℋ → (𝑆 ∘
𝑇): ℋ–onto→ ℋ) |
6 | 4, 5 | syl 17 |
. 2
⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇): ℋ–onto→ ℋ) |
7 | | f1of 6607 |
. . . . . . . 8
⊢ (𝑇: ℋ–1-1-onto→
ℋ → 𝑇:
ℋ⟶ ℋ) |
8 | 2, 7 | syl 17 |
. . . . . . 7
⊢ (𝑇 ∈ UniOp → 𝑇: ℋ⟶
ℋ) |
9 | 8 | adantl 485 |
. . . . . 6
⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → 𝑇: ℋ⟶
ℋ) |
10 | | simpl 486 |
. . . . . 6
⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈
ℋ) |
11 | | fvco3 6756 |
. . . . . 6
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ) →
((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
12 | 9, 10, 11 | syl2an 598 |
. . . . 5
⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
13 | | simpr 488 |
. . . . . 6
⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑦 ∈
ℋ) |
14 | | fvco3 6756 |
. . . . . 6
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑦 ∈ ℋ) →
((𝑆 ∘ 𝑇)‘𝑦) = (𝑆‘(𝑇‘𝑦))) |
15 | 9, 13, 14 | syl2an 598 |
. . . . 5
⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆 ∘ 𝑇)‘𝑦) = (𝑆‘(𝑇‘𝑦))) |
16 | 12, 15 | oveq12d 7174 |
. . . 4
⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) →
(((𝑆 ∘ 𝑇)‘𝑥) ·ih ((𝑆 ∘ 𝑇)‘𝑦)) = ((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦)))) |
17 | | ffvelrn 6846 |
. . . . . . . 8
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ) →
(𝑇‘𝑥) ∈ ℋ) |
18 | | ffvelrn 6846 |
. . . . . . . 8
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑦 ∈ ℋ) →
(𝑇‘𝑦) ∈ ℋ) |
19 | 17, 18 | anim12dan 621 |
. . . . . . 7
⊢ ((𝑇: ℋ⟶ ℋ ∧
(𝑥 ∈ ℋ ∧
𝑦 ∈ ℋ)) →
((𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ)) |
20 | 8, 19 | sylan 583 |
. . . . . 6
⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ)) |
21 | | unop 29811 |
. . . . . . 7
⊢ ((𝑆 ∈ UniOp ∧ (𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
22 | 21 | 3expb 1117 |
. . . . . 6
⊢ ((𝑆 ∈ UniOp ∧ ((𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ)) → ((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
23 | 20, 22 | sylan2 595 |
. . . . 5
⊢ ((𝑆 ∈ UniOp ∧ (𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) →
((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
24 | 23 | anassrs 471 |
. . . 4
⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
25 | | unop 29811 |
. . . . . 6
⊢ ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
26 | 25 | 3expb 1117 |
. . . . 5
⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
27 | 26 | adantll 713 |
. . . 4
⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
28 | 16, 24, 27 | 3eqtrd 2797 |
. . 3
⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) →
(((𝑆 ∘ 𝑇)‘𝑥) ·ih ((𝑆 ∘ 𝑇)‘𝑦)) = (𝑥 ·ih 𝑦)) |
29 | 28 | ralrimivva 3120 |
. 2
⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) →
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
(((𝑆 ∘ 𝑇)‘𝑥) ·ih ((𝑆 ∘ 𝑇)‘𝑦)) = (𝑥 ·ih 𝑦)) |
30 | | elunop 29768 |
. 2
⊢ ((𝑆 ∘ 𝑇) ∈ UniOp ↔ ((𝑆 ∘ 𝑇): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆 ∘ 𝑇)‘𝑥) ·ih ((𝑆 ∘ 𝑇)‘𝑦)) = (𝑥 ·ih 𝑦))) |
31 | 6, 29, 30 | sylanbrc 586 |
1
⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇) ∈ UniOp) |