| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > counop | Structured version Visualization version GIF version | ||
| Description: The composition of two unitary operators is unitary. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| counop | ⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇) ∈ UniOp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unopf1o 31843 | . . . 4 ⊢ (𝑆 ∈ UniOp → 𝑆: ℋ–1-1-onto→ ℋ) | |
| 2 | unopf1o 31843 | . . . 4 ⊢ (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ) | |
| 3 | f1oco 6840 | . . . 4 ⊢ ((𝑆: ℋ–1-1-onto→ ℋ ∧ 𝑇: ℋ–1-1-onto→ ℋ) → (𝑆 ∘ 𝑇): ℋ–1-1-onto→ ℋ) | |
| 4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇): ℋ–1-1-onto→ ℋ) |
| 5 | f1ofo 6824 | . . 3 ⊢ ((𝑆 ∘ 𝑇): ℋ–1-1-onto→ ℋ → (𝑆 ∘ 𝑇): ℋ–onto→ ℋ) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇): ℋ–onto→ ℋ) |
| 7 | f1of 6817 | . . . . . . . 8 ⊢ (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ⟶ ℋ) | |
| 8 | 2, 7 | syl 17 | . . . . . . 7 ⊢ (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ) |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → 𝑇: ℋ⟶ ℋ) |
| 10 | simpl 482 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ) | |
| 11 | fvco3 6977 | . . . . . 6 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) | |
| 12 | 9, 10, 11 | syl2an 596 | . . . . 5 ⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆 ∘ 𝑇)‘𝑥) = (𝑆‘(𝑇‘𝑥))) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑦 ∈ ℋ) | |
| 14 | fvco3 6977 | . . . . . 6 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆 ∘ 𝑇)‘𝑦) = (𝑆‘(𝑇‘𝑦))) | |
| 15 | 9, 13, 14 | syl2an 596 | . . . . 5 ⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆 ∘ 𝑇)‘𝑦) = (𝑆‘(𝑇‘𝑦))) |
| 16 | 12, 15 | oveq12d 7421 | . . . 4 ⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih ((𝑆 ∘ 𝑇)‘𝑦)) = ((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦)))) |
| 17 | ffvelcdm 7070 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
| 18 | ffvelcdm 7070 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇‘𝑦) ∈ ℋ) | |
| 19 | 17, 18 | anim12dan 619 | . . . . . . 7 ⊢ ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ)) |
| 20 | 8, 19 | sylan 580 | . . . . . 6 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ)) |
| 21 | unop 31842 | . . . . . . 7 ⊢ ((𝑆 ∈ UniOp ∧ (𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ) → ((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) | |
| 22 | 21 | 3expb 1120 | . . . . . 6 ⊢ ((𝑆 ∈ UniOp ∧ ((𝑇‘𝑥) ∈ ℋ ∧ (𝑇‘𝑦) ∈ ℋ)) → ((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
| 23 | 20, 22 | sylan2 593 | . . . . 5 ⊢ ((𝑆 ∈ UniOp ∧ (𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) → ((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
| 24 | 23 | anassrs 467 | . . . 4 ⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆‘(𝑇‘𝑥)) ·ih (𝑆‘(𝑇‘𝑦))) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
| 25 | unop 31842 | . . . . . 6 ⊢ ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) | |
| 26 | 25 | 3expb 1120 | . . . . 5 ⊢ ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 27 | 26 | adantll 714 | . . . 4 ⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 28 | 16, 24, 27 | 3eqtrd 2774 | . . 3 ⊢ (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆 ∘ 𝑇)‘𝑥) ·ih ((𝑆 ∘ 𝑇)‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 29 | 28 | ralrimivva 3187 | . 2 ⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆 ∘ 𝑇)‘𝑥) ·ih ((𝑆 ∘ 𝑇)‘𝑦)) = (𝑥 ·ih 𝑦)) |
| 30 | elunop 31799 | . 2 ⊢ ((𝑆 ∘ 𝑇) ∈ UniOp ↔ ((𝑆 ∘ 𝑇): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆 ∘ 𝑇)‘𝑥) ·ih ((𝑆 ∘ 𝑇)‘𝑦)) = (𝑥 ·ih 𝑦))) | |
| 31 | 6, 29, 30 | sylanbrc 583 | 1 ⊢ ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆 ∘ 𝑇) ∈ UniOp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∘ ccom 5658 ⟶wf 6526 –onto→wfo 6528 –1-1-onto→wf1o 6529 ‘cfv 6530 (class class class)co 7403 ℋchba 30846 ·ih csp 30849 UniOpcuo 30876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-hilex 30926 ax-hfvadd 30927 ax-hvcom 30928 ax-hvass 30929 ax-hv0cl 30930 ax-hvaddid 30931 ax-hfvmul 30932 ax-hvmulid 30933 ax-hvdistr2 30936 ax-hvmul0 30937 ax-hfi 31006 ax-his1 31009 ax-his2 31010 ax-his3 31011 ax-his4 31012 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-cj 15116 df-re 15117 df-im 15118 df-hvsub 30898 df-unop 31770 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |