HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  counop Structured version   Visualization version   GIF version

Theorem counop 31848
Description: The composition of two unitary operators is unitary. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
counop ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇) ∈ UniOp)

Proof of Theorem counop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopf1o 31843 . . . 4 (𝑆 ∈ UniOp → 𝑆: ℋ–1-1-onto→ ℋ)
2 unopf1o 31843 . . . 4 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
3 f1oco 6840 . . . 4 ((𝑆: ℋ–1-1-onto→ ℋ ∧ 𝑇: ℋ–1-1-onto→ ℋ) → (𝑆𝑇): ℋ–1-1-onto→ ℋ)
41, 2, 3syl2an 596 . . 3 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇): ℋ–1-1-onto→ ℋ)
5 f1ofo 6824 . . 3 ((𝑆𝑇): ℋ–1-1-onto→ ℋ → (𝑆𝑇): ℋ–onto→ ℋ)
64, 5syl 17 . 2 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇): ℋ–onto→ ℋ)
7 f1of 6817 . . . . . . . 8 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ⟶ ℋ)
82, 7syl 17 . . . . . . 7 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
98adantl 481 . . . . . 6 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → 𝑇: ℋ⟶ ℋ)
10 simpl 482 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ)
11 fvco3 6977 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
129, 10, 11syl2an 596 . . . . 5 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
13 simpr 484 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑦 ∈ ℋ)
14 fvco3 6977 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆𝑇)‘𝑦) = (𝑆‘(𝑇𝑦)))
159, 13, 14syl2an 596 . . . . 5 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑇)‘𝑦) = (𝑆‘(𝑇𝑦)))
1612, 15oveq12d 7421 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))))
17 ffvelcdm 7070 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
18 ffvelcdm 7070 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
1917, 18anim12dan 619 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
208, 19sylan 580 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
21 unop 31842 . . . . . . 7 ((𝑆 ∈ UniOp ∧ (𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
22213expb 1120 . . . . . 6 ((𝑆 ∈ UniOp ∧ ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ)) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
2320, 22sylan2 593 . . . . 5 ((𝑆 ∈ UniOp ∧ (𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
2423anassrs 467 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
25 unop 31842 . . . . . 6 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
26253expb 1120 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
2726adantll 714 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
2816, 24, 273eqtrd 2774 . . 3 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦))
2928ralrimivva 3187 . 2 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦))
30 elunop 31799 . 2 ((𝑆𝑇) ∈ UniOp ↔ ((𝑆𝑇): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦)))
316, 29, 30sylanbrc 583 1 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇) ∈ UniOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  ccom 5658  wf 6526  ontowfo 6528  1-1-ontowf1o 6529  cfv 6530  (class class class)co 7403  chba 30846   ·ih csp 30849  UniOpcuo 30876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-hilex 30926  ax-hfvadd 30927  ax-hvcom 30928  ax-hvass 30929  ax-hv0cl 30930  ax-hvaddid 30931  ax-hfvmul 30932  ax-hvmulid 30933  ax-hvdistr2 30936  ax-hvmul0 30937  ax-hfi 31006  ax-his1 31009  ax-his2 31010  ax-his3 31011  ax-his4 31012
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-cj 15116  df-re 15117  df-im 15118  df-hvsub 30898  df-unop 31770
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator