HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  counop Structured version   Visualization version   GIF version

Theorem counop 29817
Description: The composition of two unitary operators is unitary. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
counop ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇) ∈ UniOp)

Proof of Theorem counop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unopf1o 29812 . . . 4 (𝑆 ∈ UniOp → 𝑆: ℋ–1-1-onto→ ℋ)
2 unopf1o 29812 . . . 4 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
3 f1oco 6629 . . . 4 ((𝑆: ℋ–1-1-onto→ ℋ ∧ 𝑇: ℋ–1-1-onto→ ℋ) → (𝑆𝑇): ℋ–1-1-onto→ ℋ)
41, 2, 3syl2an 598 . . 3 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇): ℋ–1-1-onto→ ℋ)
5 f1ofo 6614 . . 3 ((𝑆𝑇): ℋ–1-1-onto→ ℋ → (𝑆𝑇): ℋ–onto→ ℋ)
64, 5syl 17 . 2 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇): ℋ–onto→ ℋ)
7 f1of 6607 . . . . . . . 8 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ⟶ ℋ)
82, 7syl 17 . . . . . . 7 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
98adantl 485 . . . . . 6 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → 𝑇: ℋ⟶ ℋ)
10 simpl 486 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑥 ∈ ℋ)
11 fvco3 6756 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
129, 10, 11syl2an 598 . . . . 5 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑇)‘𝑥) = (𝑆‘(𝑇𝑥)))
13 simpr 488 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → 𝑦 ∈ ℋ)
14 fvco3 6756 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑆𝑇)‘𝑦) = (𝑆‘(𝑇𝑦)))
159, 13, 14syl2an 598 . . . . 5 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆𝑇)‘𝑦) = (𝑆‘(𝑇𝑦)))
1612, 15oveq12d 7174 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))))
17 ffvelrn 6846 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
18 ffvelrn 6846 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑇𝑦) ∈ ℋ)
1917, 18anim12dan 621 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
208, 19sylan 583 . . . . . 6 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ))
21 unop 29811 . . . . . . 7 ((𝑆 ∈ UniOp ∧ (𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
22213expb 1117 . . . . . 6 ((𝑆 ∈ UniOp ∧ ((𝑇𝑥) ∈ ℋ ∧ (𝑇𝑦) ∈ ℋ)) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
2320, 22sylan2 595 . . . . 5 ((𝑆 ∈ UniOp ∧ (𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ))) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
2423anassrs 471 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑆‘(𝑇𝑥)) ·ih (𝑆‘(𝑇𝑦))) = ((𝑇𝑥) ·ih (𝑇𝑦)))
25 unop 29811 . . . . . 6 ((𝑇 ∈ UniOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
26253expb 1117 . . . . 5 ((𝑇 ∈ UniOp ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
2726adantll 713 . . . 4 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑇𝑥) ·ih (𝑇𝑦)) = (𝑥 ·ih 𝑦))
2816, 24, 273eqtrd 2797 . . 3 (((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦))
2928ralrimivva 3120 . 2 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦))
30 elunop 29768 . 2 ((𝑆𝑇) ∈ UniOp ↔ ((𝑆𝑇): ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((𝑆𝑇)‘𝑥) ·ih ((𝑆𝑇)‘𝑦)) = (𝑥 ·ih 𝑦)))
316, 29, 30sylanbrc 586 1 ((𝑆 ∈ UniOp ∧ 𝑇 ∈ UniOp) → (𝑆𝑇) ∈ UniOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3070  ccom 5532  wf 6336  ontowfo 6338  1-1-ontowf1o 6339  cfv 6340  (class class class)co 7156  chba 28815   ·ih csp 28818  UniOpcuo 28845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-hilex 28895  ax-hfvadd 28896  ax-hvcom 28897  ax-hvass 28898  ax-hv0cl 28899  ax-hvaddid 28900  ax-hfvmul 28901  ax-hvmulid 28902  ax-hvdistr2 28905  ax-hvmul0 28906  ax-hfi 28975  ax-his1 28978  ax-his2 28979  ax-his3 28980  ax-his4 28981
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-2 11750  df-cj 14519  df-re 14520  df-im 14521  df-hvsub 28867  df-unop 29739
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator