| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoaddcl | Structured version Visualization version GIF version | ||
| Description: The sum of Hilbert space operators is an operator. (Contributed by NM, 21-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hoaddcl | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇): ℋ⟶ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm 7009 | . . . . 5 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑆‘𝑥) ∈ ℋ) | |
| 2 | 1 | adantlr 715 | . . . 4 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑆‘𝑥) ∈ ℋ) |
| 3 | ffvelcdm 7009 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
| 4 | 3 | adantll 714 | . . . 4 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) |
| 5 | hvaddcl 30982 | . . . 4 ⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) ∈ ℋ) | |
| 6 | 2, 4, 5 | syl2anc 584 | . . 3 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) ∈ ℋ) |
| 7 | 6 | fmpttd 7043 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))): ℋ⟶ ℋ) |
| 8 | hosmval 31705 | . . 3 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) | |
| 9 | 8 | feq1d 6629 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑆 +op 𝑇): ℋ⟶ ℋ ↔ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))): ℋ⟶ ℋ)) |
| 10 | 7, 9 | mpbird 257 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇): ℋ⟶ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2110 ↦ cmpt 5170 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ℋchba 30889 +ℎ cva 30890 +op chos 30908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-hilex 30969 ax-hfvadd 30970 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-map 8747 df-hosum 31700 |
| This theorem is referenced by: hoaddcli 31738 hoadd4 31754 hoadddi 31773 hoadddir 31774 hosub4 31783 hoaddsubass 31785 ho2times 31789 hmops 31990 adjadd 32063 opsqrlem6 32115 |
| Copyright terms: Public domain | W3C validator |