![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hoaddcl | Structured version Visualization version GIF version |
Description: The sum of Hilbert space operators is an operator. (Contributed by NM, 21-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hoaddcl | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇): ℋ⟶ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffvelcdm 7090 | . . . . 5 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑆‘𝑥) ∈ ℋ) | |
2 | 1 | adantlr 713 | . . . 4 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑆‘𝑥) ∈ ℋ) |
3 | ffvelcdm 7090 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) | |
4 | 3 | adantll 712 | . . . 4 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ℋ) |
5 | hvaddcl 30894 | . . . 4 ⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) → ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) ∈ ℋ) | |
6 | 2, 4, 5 | syl2anc 582 | . . 3 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) ∈ ℋ) |
7 | 6 | fmpttd 7124 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))): ℋ⟶ ℋ) |
8 | hosmval 31617 | . . 3 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) | |
9 | 8 | feq1d 6708 | . 2 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑆 +op 𝑇): ℋ⟶ ℋ ↔ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))): ℋ⟶ ℋ)) |
10 | 7, 9 | mpbird 256 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇): ℋ⟶ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ↦ cmpt 5232 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ℋchba 30801 +ℎ cva 30802 +op chos 30820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-hilex 30881 ax-hfvadd 30882 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-map 8847 df-hosum 31612 |
This theorem is referenced by: hoaddcli 31650 hoadd4 31666 hoadddi 31685 hoadddir 31686 hosub4 31695 hoaddsubass 31697 ho2times 31701 hmops 31902 adjadd 31975 opsqrlem6 32027 |
Copyright terms: Public domain | W3C validator |