HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoaddcl Structured version   Visualization version   GIF version

Theorem hoaddcl 31728
Description: The sum of Hilbert space operators is an operator. (Contributed by NM, 21-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
hoaddcl ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇): ℋ⟶ ℋ)

Proof of Theorem hoaddcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ffvelcdm 7009 . . . . 5 ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑆𝑥) ∈ ℋ)
21adantlr 715 . . . 4 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑆𝑥) ∈ ℋ)
3 ffvelcdm 7009 . . . . 5 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
43adantll 714 . . . 4 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ℋ)
5 hvaddcl 30982 . . . 4 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → ((𝑆𝑥) + (𝑇𝑥)) ∈ ℋ)
62, 4, 5syl2anc 584 . . 3 (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑆𝑥) + (𝑇𝑥)) ∈ ℋ)
76fmpttd 7043 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))): ℋ⟶ ℋ)
8 hosmval 31705 . . 3 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
98feq1d 6629 . 2 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑆 +op 𝑇): ℋ⟶ ℋ ↔ (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))): ℋ⟶ ℋ))
107, 9mpbird 257 1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇): ℋ⟶ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2110  cmpt 5170  wf 6473  cfv 6477  (class class class)co 7341  chba 30889   + cva 30890   +op chos 30908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-hilex 30969  ax-hfvadd 30970
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-hosum 31700
This theorem is referenced by:  hoaddcli  31738  hoadd4  31754  hoadddi  31773  hoadddir  31774  hosub4  31783  hoaddsubass  31785  ho2times  31789  hmops  31990  adjadd  32063  opsqrlem6  32115
  Copyright terms: Public domain W3C validator