| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hvmaplkr | Structured version Visualization version GIF version | ||
| Description: Kernel of the vector to functional map. TODO: make this become lcfrlem11 41518. (Contributed by NM, 29-Mar-2015.) |
| Ref | Expression |
|---|---|
| hvmaplkr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hvmaplkr.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| hvmaplkr.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hvmaplkr.v | ⊢ 𝑉 = (Base‘𝑈) |
| hvmaplkr.z | ⊢ 0 = (0g‘𝑈) |
| hvmaplkr.l | ⊢ 𝐿 = (LKer‘𝑈) |
| hvmaplkr.m | ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) |
| hvmaplkr.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hvmaplkr.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| Ref | Expression |
|---|---|
| hvmaplkr | ⊢ (𝜑 → (𝐿‘(𝑀‘𝑋)) = (𝑂‘{𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmaplkr.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hvmaplkr.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hvmaplkr.o | . . . . 5 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 4 | hvmaplkr.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | eqid 2735 | . . . . 5 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 6 | eqid 2735 | . . . . 5 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
| 7 | hvmaplkr.z | . . . . 5 ⊢ 0 = (0g‘𝑈) | |
| 8 | eqid 2735 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 9 | eqid 2735 | . . . . 5 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
| 10 | hvmaplkr.m | . . . . 5 ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) | |
| 11 | hvmaplkr.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | hvmapfval 41724 | . . . 4 ⊢ (𝜑 → 𝑀 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡(+g‘𝑈)(𝑗( ·𝑠 ‘𝑈)𝑥)))))) |
| 13 | 12 | fveq1d 6877 | . . 3 ⊢ (𝜑 → (𝑀‘𝑋) = ((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡(+g‘𝑈)(𝑗( ·𝑠 ‘𝑈)𝑥)))))‘𝑋)) |
| 14 | 13 | fveq2d 6879 | . 2 ⊢ (𝜑 → (𝐿‘(𝑀‘𝑋)) = (𝐿‘((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡(+g‘𝑈)(𝑗( ·𝑠 ‘𝑈)𝑥)))))‘𝑋))) |
| 15 | eqid 2735 | . . 3 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
| 16 | hvmaplkr.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
| 17 | eqid 2735 | . . 3 ⊢ (LDual‘𝑈) = (LDual‘𝑈) | |
| 18 | eqid 2735 | . . 3 ⊢ (0g‘(LDual‘𝑈)) = (0g‘(LDual‘𝑈)) | |
| 19 | eqid 2735 | . . 3 ⊢ {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)} = {𝑓 ∈ (LFnl‘𝑈) ∣ (𝑂‘(𝑂‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 20 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡(+g‘𝑈)(𝑗( ·𝑠 ‘𝑈)𝑥))))) = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡(+g‘𝑈)(𝑗( ·𝑠 ‘𝑈)𝑥))))) | |
| 21 | hvmaplkr.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 22 | 1, 3, 2, 4, 5, 6, 8, 9, 7, 15, 16, 17, 18, 19, 20, 11, 21 | lcfrlem11 41518 | . 2 ⊢ (𝜑 → (𝐿‘((𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣 ∈ 𝑉 ↦ (℩𝑗 ∈ (Base‘(Scalar‘𝑈))∃𝑡 ∈ (𝑂‘{𝑥})𝑣 = (𝑡(+g‘𝑈)(𝑗( ·𝑠 ‘𝑈)𝑥)))))‘𝑋)) = (𝑂‘{𝑋})) |
| 23 | 14, 22 | eqtrd 2770 | 1 ⊢ (𝜑 → (𝐿‘(𝑀‘𝑋)) = (𝑂‘{𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 {crab 3415 ∖ cdif 3923 {csn 4601 ↦ cmpt 5201 ‘cfv 6530 ℩crio 7359 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 Scalarcsca 17272 ·𝑠 cvsca 17273 0gc0g 17451 LFnlclfn 39021 LKerclk 39049 LDualcld 39087 HLchlt 39314 LHypclh 39949 DVecHcdvh 41043 ocHcoch 41312 HVMapchvm 41721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-riotaBAD 38917 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-tpos 8223 df-undef 8270 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-0g 17453 df-proset 18304 df-poset 18323 df-plt 18338 df-lub 18354 df-glb 18355 df-join 18356 df-meet 18357 df-p0 18433 df-p1 18434 df-lat 18440 df-clat 18507 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-subg 19104 df-cntz 19298 df-lsm 19615 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-dvr 20359 df-drng 20689 df-lmod 20817 df-lss 20887 df-lsp 20927 df-lvec 21059 df-lsatoms 38940 df-lshyp 38941 df-lfl 39022 df-lkr 39050 df-oposet 39140 df-ol 39142 df-oml 39143 df-covers 39230 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 df-llines 39463 df-lplanes 39464 df-lvols 39465 df-lines 39466 df-psubsp 39468 df-pmap 39469 df-padd 39761 df-lhyp 39953 df-laut 39954 df-ldil 40069 df-ltrn 40070 df-trl 40124 df-tgrp 40708 df-tendo 40720 df-edring 40722 df-dveca 40968 df-disoa 40994 df-dvech 41044 df-dib 41104 df-dic 41138 df-dih 41194 df-doch 41313 df-djh 41360 df-hvmap 41722 |
| This theorem is referenced by: mapdhvmap 41734 |
| Copyright terms: Public domain | W3C validator |