MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1mulc Structured version   Visualization version   GIF version

Theorem itg1mulc 25654
Description: The integral of a constant times a simple function is the constant times the original integral. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2 (𝜑𝐹 ∈ dom ∫1)
i1fmulc.3 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
itg1mulc (𝜑 → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫1𝐹)))

Proof of Theorem itg1mulc
Dummy variables 𝑘 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg10 25637 . . 3 (∫1‘(ℝ × {0})) = 0
2 reex 11237 . . . . . 6 ℝ ∈ V
32a1i 11 . . . . 5 ((𝜑𝐴 = 0) → ℝ ∈ V)
4 i1fmulc.2 . . . . . . 7 (𝜑𝐹 ∈ dom ∫1)
5 i1ff 25625 . . . . . . 7 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
64, 5syl 17 . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
76adantr 479 . . . . 5 ((𝜑𝐴 = 0) → 𝐹:ℝ⟶ℝ)
8 i1fmulc.3 . . . . . 6 (𝜑𝐴 ∈ ℝ)
98adantr 479 . . . . 5 ((𝜑𝐴 = 0) → 𝐴 ∈ ℝ)
10 0red 11255 . . . . 5 ((𝜑𝐴 = 0) → 0 ∈ ℝ)
11 simplr 767 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → 𝐴 = 0)
1211oveq1d 7441 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = (0 · 𝑥))
13 mul02lem2 11429 . . . . . . 7 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
1413adantl 480 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
1512, 14eqtrd 2768 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = 0)
163, 7, 9, 10, 15caofid2 7725 . . . 4 ((𝜑𝐴 = 0) → ((ℝ × {𝐴}) ∘f · 𝐹) = (ℝ × {0}))
1716fveq2d 6906 . . 3 ((𝜑𝐴 = 0) → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = (∫1‘(ℝ × {0})))
18 simpr 483 . . . . 5 ((𝜑𝐴 = 0) → 𝐴 = 0)
1918oveq1d 7441 . . . 4 ((𝜑𝐴 = 0) → (𝐴 · (∫1𝐹)) = (0 · (∫1𝐹)))
20 itg1cl 25634 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (∫1𝐹) ∈ ℝ)
214, 20syl 17 . . . . . . 7 (𝜑 → (∫1𝐹) ∈ ℝ)
2221recnd 11280 . . . . . 6 (𝜑 → (∫1𝐹) ∈ ℂ)
2322mul02d 11450 . . . . 5 (𝜑 → (0 · (∫1𝐹)) = 0)
2423adantr 479 . . . 4 ((𝜑𝐴 = 0) → (0 · (∫1𝐹)) = 0)
2519, 24eqtrd 2768 . . 3 ((𝜑𝐴 = 0) → (𝐴 · (∫1𝐹)) = 0)
261, 17, 253eqtr4a 2794 . 2 ((𝜑𝐴 = 0) → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫1𝐹)))
274, 8i1fmulc 25653 . . . . . . . . . . . . . 14 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1)
2827adantr 479 . . . . . . . . . . . . 13 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1)
29 i1ff 25625 . . . . . . . . . . . . 13 (((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶ℝ)
3028, 29syl 17 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶ℝ)
3130frnd 6735 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → ran ((ℝ × {𝐴}) ∘f · 𝐹) ⊆ ℝ)
3231ssdifssd 4143 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ⊆ ℝ)
3332sselda 3982 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑚 ∈ ℝ)
3433recnd 11280 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑚 ∈ ℂ)
358adantr 479 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℝ)
3635recnd 11280 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℂ)
3736adantr 479 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ∈ ℂ)
38 simplr 767 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ≠ 0)
3934, 37, 38divcan2d 12030 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝐴 · (𝑚 / 𝐴)) = 𝑚)
404, 8i1fmulclem 25652 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}) = (𝐹 “ {(𝑚 / 𝐴)}))
4133, 40syldan 589 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}) = (𝐹 “ {(𝑚 / 𝐴)}))
4241fveq2d 6906 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚})) = (vol‘(𝐹 “ {(𝑚 / 𝐴)})))
4342eqcomd 2734 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (vol‘(𝐹 “ {(𝑚 / 𝐴)})) = (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚})))
4439, 43oveq12d 7444 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → ((𝐴 · (𝑚 / 𝐴)) · (vol‘(𝐹 “ {(𝑚 / 𝐴)}))) = (𝑚 · (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}))))
458ad2antrr 724 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ∈ ℝ)
4633, 45, 38redivcld 12080 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑚 / 𝐴) ∈ ℝ)
4746recnd 11280 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑚 / 𝐴) ∈ ℂ)
484ad2antrr 724 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐹 ∈ dom ∫1)
4945recnd 11280 . . . . . . . . . . 11 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ∈ ℂ)
50 eldifsni 4798 . . . . . . . . . . . 12 (𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) → 𝑚 ≠ 0)
5150adantl 480 . . . . . . . . . . 11 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑚 ≠ 0)
5234, 49, 51, 38divne0d 12044 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑚 / 𝐴) ≠ 0)
53 eldifsn 4795 . . . . . . . . . 10 ((𝑚 / 𝐴) ∈ (ℝ ∖ {0}) ↔ ((𝑚 / 𝐴) ∈ ℝ ∧ (𝑚 / 𝐴) ≠ 0))
5446, 52, 53sylanbrc 581 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑚 / 𝐴) ∈ (ℝ ∖ {0}))
55 i1fima2sn 25629 . . . . . . . . 9 ((𝐹 ∈ dom ∫1 ∧ (𝑚 / 𝐴) ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {(𝑚 / 𝐴)})) ∈ ℝ)
5648, 54, 55syl2anc 582 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (vol‘(𝐹 “ {(𝑚 / 𝐴)})) ∈ ℝ)
5756recnd 11280 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (vol‘(𝐹 “ {(𝑚 / 𝐴)})) ∈ ℂ)
5837, 47, 57mulassd 11275 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → ((𝐴 · (𝑚 / 𝐴)) · (vol‘(𝐹 “ {(𝑚 / 𝐴)}))) = (𝐴 · ((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)})))))
5944, 58eqtr3d 2770 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑚 · (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}))) = (𝐴 · ((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)})))))
6059sumeq2dv 15689 . . . 4 ((𝜑𝐴 ≠ 0) → Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})(𝑚 · (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}))) = Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})(𝐴 · ((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)})))))
61 i1frn 25626 . . . . . . 7 (((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1 → ran ((ℝ × {𝐴}) ∘f · 𝐹) ∈ Fin)
6228, 61syl 17 . . . . . 6 ((𝜑𝐴 ≠ 0) → ran ((ℝ × {𝐴}) ∘f · 𝐹) ∈ Fin)
63 difss 4132 . . . . . 6 (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ⊆ ran ((ℝ × {𝐴}) ∘f · 𝐹)
64 ssfi 9204 . . . . . 6 ((ran ((ℝ × {𝐴}) ∘f · 𝐹) ∈ Fin ∧ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ⊆ ran ((ℝ × {𝐴}) ∘f · 𝐹)) → (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∈ Fin)
6562, 63, 64sylancl 584 . . . . 5 ((𝜑𝐴 ≠ 0) → (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∈ Fin)
6647, 57mulcld 11272 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → ((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)}))) ∈ ℂ)
6765, 36, 66fsummulc2 15770 . . . 4 ((𝜑𝐴 ≠ 0) → (𝐴 · Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)})))) = Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})(𝐴 · ((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)})))))
6860, 67eqtr4d 2771 . . 3 ((𝜑𝐴 ≠ 0) → Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})(𝑚 · (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}))) = (𝐴 · Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)})))))
69 itg1val 25632 . . . 4 (((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1 → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})(𝑚 · (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}))))
7028, 69syl 17 . . 3 ((𝜑𝐴 ≠ 0) → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})(𝑚 · (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}))))
714adantr 479 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐹 ∈ dom ∫1)
72 itg1val 25632 . . . . . 6 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
7371, 72syl 17 . . . . 5 ((𝜑𝐴 ≠ 0) → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
74 id 22 . . . . . . 7 (𝑘 = (𝑚 / 𝐴) → 𝑘 = (𝑚 / 𝐴))
75 sneq 4642 . . . . . . . . 9 (𝑘 = (𝑚 / 𝐴) → {𝑘} = {(𝑚 / 𝐴)})
7675imaeq2d 6068 . . . . . . . 8 (𝑘 = (𝑚 / 𝐴) → (𝐹 “ {𝑘}) = (𝐹 “ {(𝑚 / 𝐴)}))
7776fveq2d 6906 . . . . . . 7 (𝑘 = (𝑚 / 𝐴) → (vol‘(𝐹 “ {𝑘})) = (vol‘(𝐹 “ {(𝑚 / 𝐴)})))
7874, 77oveq12d 7444 . . . . . 6 (𝑘 = (𝑚 / 𝐴) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = ((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)}))))
79 eqid 2728 . . . . . . 7 (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ↦ (𝑛 / 𝐴)) = (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ↦ (𝑛 / 𝐴))
80 eldifi 4127 . . . . . . . . 9 (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) → 𝑛 ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
812a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℝ ∈ V)
826ffnd 6728 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 Fn ℝ)
83 eqidd 2729 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
8481, 8, 82, 83ofc1 7717 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) = (𝐴 · (𝐹𝑦)))
8584adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) = (𝐴 · (𝐹𝑦)))
8685oveq1d 7441 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴) = ((𝐴 · (𝐹𝑦)) / 𝐴))
876adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝐴 ≠ 0) → 𝐹:ℝ⟶ℝ)
8887ffvelcdmda 7099 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
8988recnd 11280 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℂ)
9036adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
91 simplr 767 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → 𝐴 ≠ 0)
9289, 90, 91divcan3d 12033 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → ((𝐴 · (𝐹𝑦)) / 𝐴) = (𝐹𝑦))
9386, 92eqtrd 2768 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴) = (𝐹𝑦))
9487ffnd 6728 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ 0) → 𝐹 Fn ℝ)
95 fnfvelrn 7095 . . . . . . . . . . . . . 14 ((𝐹 Fn ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ran 𝐹)
9694, 95sylan 578 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ran 𝐹)
9793, 96eqeltrd 2829 . . . . . . . . . . . 12 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴) ∈ ran 𝐹)
9897ralrimiva 3143 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → ∀𝑦 ∈ ℝ ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴) ∈ ran 𝐹)
9930ffnd 6728 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘f · 𝐹) Fn ℝ)
100 oveq1 7433 . . . . . . . . . . . . . 14 (𝑛 = (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) → (𝑛 / 𝐴) = ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴))
101100eleq1d 2814 . . . . . . . . . . . . 13 (𝑛 = (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) → ((𝑛 / 𝐴) ∈ ran 𝐹 ↔ ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴) ∈ ran 𝐹))
102101ralrn 7103 . . . . . . . . . . . 12 (((ℝ × {𝐴}) ∘f · 𝐹) Fn ℝ → (∀𝑛 ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹)(𝑛 / 𝐴) ∈ ran 𝐹 ↔ ∀𝑦 ∈ ℝ ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴) ∈ ran 𝐹))
10399, 102syl 17 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → (∀𝑛 ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹)(𝑛 / 𝐴) ∈ ran 𝐹 ↔ ∀𝑦 ∈ ℝ ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴) ∈ ran 𝐹))
10498, 103mpbird 256 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → ∀𝑛 ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹)(𝑛 / 𝐴) ∈ ran 𝐹)
105104r19.21bi 3246 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹)) → (𝑛 / 𝐴) ∈ ran 𝐹)
10680, 105sylan2 591 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑛 / 𝐴) ∈ ran 𝐹)
10732sselda 3982 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑛 ∈ ℝ)
108107recnd 11280 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑛 ∈ ℂ)
10936adantr 479 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ∈ ℂ)
110 eldifsni 4798 . . . . . . . . . 10 (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) → 𝑛 ≠ 0)
111110adantl 480 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑛 ≠ 0)
112 simplr 767 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ≠ 0)
113108, 109, 111, 112divne0d 12044 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑛 / 𝐴) ≠ 0)
114 eldifsn 4795 . . . . . . . 8 ((𝑛 / 𝐴) ∈ (ran 𝐹 ∖ {0}) ↔ ((𝑛 / 𝐴) ∈ ran 𝐹 ∧ (𝑛 / 𝐴) ≠ 0))
115106, 113, 114sylanbrc 581 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑛 / 𝐴) ∈ (ran 𝐹 ∖ {0}))
116 eldifi 4127 . . . . . . . . 9 (𝑘 ∈ (ran 𝐹 ∖ {0}) → 𝑘 ∈ ran 𝐹)
117 fnfvelrn 7095 . . . . . . . . . . . . . 14 ((((ℝ × {𝐴}) ∘f · 𝐹) Fn ℝ ∧ 𝑦 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
11899, 117sylan 578 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
11985, 118eqeltrrd 2830 . . . . . . . . . . . 12 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (𝐴 · (𝐹𝑦)) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
120119ralrimiva 3143 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → ∀𝑦 ∈ ℝ (𝐴 · (𝐹𝑦)) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
121 oveq2 7434 . . . . . . . . . . . . . 14 (𝑘 = (𝐹𝑦) → (𝐴 · 𝑘) = (𝐴 · (𝐹𝑦)))
122121eleq1d 2814 . . . . . . . . . . . . 13 (𝑘 = (𝐹𝑦) → ((𝐴 · 𝑘) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹) ↔ (𝐴 · (𝐹𝑦)) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹)))
123122ralrn 7103 . . . . . . . . . . . 12 (𝐹 Fn ℝ → (∀𝑘 ∈ ran 𝐹(𝐴 · 𝑘) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹) ↔ ∀𝑦 ∈ ℝ (𝐴 · (𝐹𝑦)) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹)))
12494, 123syl 17 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → (∀𝑘 ∈ ran 𝐹(𝐴 · 𝑘) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹) ↔ ∀𝑦 ∈ ℝ (𝐴 · (𝐹𝑦)) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹)))
125120, 124mpbird 256 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → ∀𝑘 ∈ ran 𝐹(𝐴 · 𝑘) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
126125r19.21bi 3246 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ran 𝐹) → (𝐴 · 𝑘) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
127116, 126sylan2 591 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐴 · 𝑘) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
12836adantr 479 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ∈ ℂ)
12987frnd 6735 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → ran 𝐹 ⊆ ℝ)
130129ssdifssd 4143 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → (ran 𝐹 ∖ {0}) ⊆ ℝ)
131130sselda 3982 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ)
132131recnd 11280 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ)
133 simplr 767 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ≠ 0)
134 eldifsni 4798 . . . . . . . . . 10 (𝑘 ∈ (ran 𝐹 ∖ {0}) → 𝑘 ≠ 0)
135134adantl 480 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ≠ 0)
136128, 132, 133, 135mulne0d 11904 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐴 · 𝑘) ≠ 0)
137 eldifsn 4795 . . . . . . . 8 ((𝐴 · 𝑘) ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ↔ ((𝐴 · 𝑘) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹) ∧ (𝐴 · 𝑘) ≠ 0))
138127, 136, 137sylanbrc 581 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐴 · 𝑘) ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}))
139 simpl 481 . . . . . . . . . . . 12 ((𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}))
140 ssel2 3977 . . . . . . . . . . . 12 (((ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ⊆ ℝ ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑛 ∈ ℝ)
14132, 139, 140syl2an 594 . . . . . . . . . . 11 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → 𝑛 ∈ ℝ)
142141recnd 11280 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → 𝑛 ∈ ℂ)
1438ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → 𝐴 ∈ ℝ)
144143recnd 11280 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → 𝐴 ∈ ℂ)
145131adantrl 714 . . . . . . . . . . 11 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → 𝑘 ∈ ℝ)
146145recnd 11280 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → 𝑘 ∈ ℂ)
147 simplr 767 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → 𝐴 ≠ 0)
148142, 144, 146, 147divmuld 12050 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → ((𝑛 / 𝐴) = 𝑘 ↔ (𝐴 · 𝑘) = 𝑛))
149148bicomd 222 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → ((𝐴 · 𝑘) = 𝑛 ↔ (𝑛 / 𝐴) = 𝑘))
150 eqcom 2735 . . . . . . . 8 (𝑛 = (𝐴 · 𝑘) ↔ (𝐴 · 𝑘) = 𝑛)
151 eqcom 2735 . . . . . . . 8 (𝑘 = (𝑛 / 𝐴) ↔ (𝑛 / 𝐴) = 𝑘)
152149, 150, 1513bitr4g 313 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → (𝑛 = (𝐴 · 𝑘) ↔ 𝑘 = (𝑛 / 𝐴)))
15379, 115, 138, 152f1o2d 7681 . . . . . 6 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ↦ (𝑛 / 𝐴)):(ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})–1-1-onto→(ran 𝐹 ∖ {0}))
154 oveq1 7433 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛 / 𝐴) = (𝑚 / 𝐴))
155 ovex 7459 . . . . . . . 8 (𝑚 / 𝐴) ∈ V
156154, 79, 155fvmpt 7010 . . . . . . 7 (𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) → ((𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ↦ (𝑛 / 𝐴))‘𝑚) = (𝑚 / 𝐴))
157156adantl 480 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → ((𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ↦ (𝑛 / 𝐴))‘𝑚) = (𝑚 / 𝐴))
158 i1fima2sn 25629 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
15971, 158sylan 578 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
160131, 159remulcld 11282 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) ∈ ℝ)
161160recnd 11280 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) ∈ ℂ)
16278, 65, 153, 157, 161fsumf1o 15709 . . . . 5 ((𝜑𝐴 ≠ 0) → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))) = Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)}))))
16373, 162eqtrd 2768 . . . 4 ((𝜑𝐴 ≠ 0) → (∫1𝐹) = Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)}))))
164163oveq2d 7442 . . 3 ((𝜑𝐴 ≠ 0) → (𝐴 · (∫1𝐹)) = (𝐴 · Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)})))))
16568, 70, 1643eqtr4d 2778 . 2 ((𝜑𝐴 ≠ 0) → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫1𝐹)))
16626, 165pm2.61dane 3026 1 (𝜑 → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫1𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2937  wral 3058  Vcvv 3473  cdif 3946  wss 3949  {csn 4632  cmpt 5235   × cxp 5680  ccnv 5681  dom cdm 5682  ran crn 5683  cima 5685   Fn wfn 6548  wf 6549  cfv 6553  (class class class)co 7426  f cof 7689  Fincfn 8970  cc 11144  cr 11145  0cc0 11146   · cmul 11151   / cdiv 11909  Σcsu 15672  volcvol 25412  1citg1 25564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-oi 9541  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-q 12971  df-rp 13015  df-xadd 13133  df-ioo 13368  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13797  df-seq 14007  df-exp 14067  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-clim 15472  df-sum 15673  df-xmet 21279  df-met 21280  df-ovol 25413  df-vol 25414  df-mbf 25568  df-itg1 25569
This theorem is referenced by:  itg1sub  25659  itg2const  25690  itg2mulclem  25696  itg2monolem1  25700  itg2addnclem  37177
  Copyright terms: Public domain W3C validator