MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1mulc Structured version   Visualization version   GIF version

Theorem itg1mulc 24297
Description: The integral of a constant times a simple function is the constant times the original integral. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2 (𝜑𝐹 ∈ dom ∫1)
i1fmulc.3 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
itg1mulc (𝜑 → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫1𝐹)))

Proof of Theorem itg1mulc
Dummy variables 𝑘 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg10 24281 . . 3 (∫1‘(ℝ × {0})) = 0
2 reex 10620 . . . . . 6 ℝ ∈ V
32a1i 11 . . . . 5 ((𝜑𝐴 = 0) → ℝ ∈ V)
4 i1fmulc.2 . . . . . . 7 (𝜑𝐹 ∈ dom ∫1)
5 i1ff 24269 . . . . . . 7 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
64, 5syl 17 . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
76adantr 483 . . . . 5 ((𝜑𝐴 = 0) → 𝐹:ℝ⟶ℝ)
8 i1fmulc.3 . . . . . 6 (𝜑𝐴 ∈ ℝ)
98adantr 483 . . . . 5 ((𝜑𝐴 = 0) → 𝐴 ∈ ℝ)
10 0red 10636 . . . . 5 ((𝜑𝐴 = 0) → 0 ∈ ℝ)
11 simplr 767 . . . . . . 7 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → 𝐴 = 0)
1211oveq1d 7163 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = (0 · 𝑥))
13 mul02lem2 10809 . . . . . . 7 (𝑥 ∈ ℝ → (0 · 𝑥) = 0)
1413adantl 484 . . . . . 6 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (0 · 𝑥) = 0)
1512, 14eqtrd 2854 . . . . 5 (((𝜑𝐴 = 0) ∧ 𝑥 ∈ ℝ) → (𝐴 · 𝑥) = 0)
163, 7, 9, 10, 15caofid2 7432 . . . 4 ((𝜑𝐴 = 0) → ((ℝ × {𝐴}) ∘f · 𝐹) = (ℝ × {0}))
1716fveq2d 6667 . . 3 ((𝜑𝐴 = 0) → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = (∫1‘(ℝ × {0})))
18 simpr 487 . . . . 5 ((𝜑𝐴 = 0) → 𝐴 = 0)
1918oveq1d 7163 . . . 4 ((𝜑𝐴 = 0) → (𝐴 · (∫1𝐹)) = (0 · (∫1𝐹)))
20 itg1cl 24278 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (∫1𝐹) ∈ ℝ)
214, 20syl 17 . . . . . . 7 (𝜑 → (∫1𝐹) ∈ ℝ)
2221recnd 10661 . . . . . 6 (𝜑 → (∫1𝐹) ∈ ℂ)
2322mul02d 10830 . . . . 5 (𝜑 → (0 · (∫1𝐹)) = 0)
2423adantr 483 . . . 4 ((𝜑𝐴 = 0) → (0 · (∫1𝐹)) = 0)
2519, 24eqtrd 2854 . . 3 ((𝜑𝐴 = 0) → (𝐴 · (∫1𝐹)) = 0)
261, 17, 253eqtr4a 2880 . 2 ((𝜑𝐴 = 0) → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫1𝐹)))
274, 8i1fmulc 24296 . . . . . . . . . . . . . 14 (𝜑 → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1)
2827adantr 483 . . . . . . . . . . . . 13 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1)
29 i1ff 24269 . . . . . . . . . . . . 13 (((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1 → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶ℝ)
3028, 29syl 17 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘f · 𝐹):ℝ⟶ℝ)
3130frnd 6514 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → ran ((ℝ × {𝐴}) ∘f · 𝐹) ⊆ ℝ)
3231ssdifssd 4117 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ⊆ ℝ)
3332sselda 3965 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑚 ∈ ℝ)
3433recnd 10661 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑚 ∈ ℂ)
358adantr 483 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℝ)
3635recnd 10661 . . . . . . . . 9 ((𝜑𝐴 ≠ 0) → 𝐴 ∈ ℂ)
3736adantr 483 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ∈ ℂ)
38 simplr 767 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ≠ 0)
3934, 37, 38divcan2d 11410 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝐴 · (𝑚 / 𝐴)) = 𝑚)
404, 8i1fmulclem 24295 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}) = (𝐹 “ {(𝑚 / 𝐴)}))
4133, 40syldan 593 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}) = (𝐹 “ {(𝑚 / 𝐴)}))
4241fveq2d 6667 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚})) = (vol‘(𝐹 “ {(𝑚 / 𝐴)})))
4342eqcomd 2825 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (vol‘(𝐹 “ {(𝑚 / 𝐴)})) = (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚})))
4439, 43oveq12d 7166 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → ((𝐴 · (𝑚 / 𝐴)) · (vol‘(𝐹 “ {(𝑚 / 𝐴)}))) = (𝑚 · (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}))))
458ad2antrr 724 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ∈ ℝ)
4633, 45, 38redivcld 11460 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑚 / 𝐴) ∈ ℝ)
4746recnd 10661 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑚 / 𝐴) ∈ ℂ)
484ad2antrr 724 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐹 ∈ dom ∫1)
4945recnd 10661 . . . . . . . . . . 11 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ∈ ℂ)
50 eldifsni 4714 . . . . . . . . . . . 12 (𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) → 𝑚 ≠ 0)
5150adantl 484 . . . . . . . . . . 11 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑚 ≠ 0)
5234, 49, 51, 38divne0d 11424 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑚 / 𝐴) ≠ 0)
53 eldifsn 4711 . . . . . . . . . 10 ((𝑚 / 𝐴) ∈ (ℝ ∖ {0}) ↔ ((𝑚 / 𝐴) ∈ ℝ ∧ (𝑚 / 𝐴) ≠ 0))
5446, 52, 53sylanbrc 585 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑚 / 𝐴) ∈ (ℝ ∖ {0}))
55 i1fima2sn 24273 . . . . . . . . 9 ((𝐹 ∈ dom ∫1 ∧ (𝑚 / 𝐴) ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {(𝑚 / 𝐴)})) ∈ ℝ)
5648, 54, 55syl2anc 586 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (vol‘(𝐹 “ {(𝑚 / 𝐴)})) ∈ ℝ)
5756recnd 10661 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (vol‘(𝐹 “ {(𝑚 / 𝐴)})) ∈ ℂ)
5837, 47, 57mulassd 10656 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → ((𝐴 · (𝑚 / 𝐴)) · (vol‘(𝐹 “ {(𝑚 / 𝐴)}))) = (𝐴 · ((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)})))))
5944, 58eqtr3d 2856 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑚 · (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}))) = (𝐴 · ((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)})))))
6059sumeq2dv 15052 . . . 4 ((𝜑𝐴 ≠ 0) → Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})(𝑚 · (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}))) = Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})(𝐴 · ((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)})))))
61 i1frn 24270 . . . . . . 7 (((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1 → ran ((ℝ × {𝐴}) ∘f · 𝐹) ∈ Fin)
6228, 61syl 17 . . . . . 6 ((𝜑𝐴 ≠ 0) → ran ((ℝ × {𝐴}) ∘f · 𝐹) ∈ Fin)
63 difss 4106 . . . . . 6 (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ⊆ ran ((ℝ × {𝐴}) ∘f · 𝐹)
64 ssfi 8730 . . . . . 6 ((ran ((ℝ × {𝐴}) ∘f · 𝐹) ∈ Fin ∧ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ⊆ ran ((ℝ × {𝐴}) ∘f · 𝐹)) → (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∈ Fin)
6562, 63, 64sylancl 588 . . . . 5 ((𝜑𝐴 ≠ 0) → (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∈ Fin)
6647, 57mulcld 10653 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → ((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)}))) ∈ ℂ)
6765, 36, 66fsummulc2 15131 . . . 4 ((𝜑𝐴 ≠ 0) → (𝐴 · Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)})))) = Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})(𝐴 · ((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)})))))
6860, 67eqtr4d 2857 . . 3 ((𝜑𝐴 ≠ 0) → Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})(𝑚 · (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}))) = (𝐴 · Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)})))))
69 itg1val 24276 . . . 4 (((ℝ × {𝐴}) ∘f · 𝐹) ∈ dom ∫1 → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})(𝑚 · (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}))))
7028, 69syl 17 . . 3 ((𝜑𝐴 ≠ 0) → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})(𝑚 · (vol‘(((ℝ × {𝐴}) ∘f · 𝐹) “ {𝑚}))))
714adantr 483 . . . . . 6 ((𝜑𝐴 ≠ 0) → 𝐹 ∈ dom ∫1)
72 itg1val 24276 . . . . . 6 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
7371, 72syl 17 . . . . 5 ((𝜑𝐴 ≠ 0) → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
74 id 22 . . . . . . 7 (𝑘 = (𝑚 / 𝐴) → 𝑘 = (𝑚 / 𝐴))
75 sneq 4569 . . . . . . . . 9 (𝑘 = (𝑚 / 𝐴) → {𝑘} = {(𝑚 / 𝐴)})
7675imaeq2d 5922 . . . . . . . 8 (𝑘 = (𝑚 / 𝐴) → (𝐹 “ {𝑘}) = (𝐹 “ {(𝑚 / 𝐴)}))
7776fveq2d 6667 . . . . . . 7 (𝑘 = (𝑚 / 𝐴) → (vol‘(𝐹 “ {𝑘})) = (vol‘(𝐹 “ {(𝑚 / 𝐴)})))
7874, 77oveq12d 7166 . . . . . 6 (𝑘 = (𝑚 / 𝐴) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = ((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)}))))
79 eqid 2819 . . . . . . 7 (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ↦ (𝑛 / 𝐴)) = (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ↦ (𝑛 / 𝐴))
80 eldifi 4101 . . . . . . . . 9 (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) → 𝑛 ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
812a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → ℝ ∈ V)
826ffnd 6508 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 Fn ℝ)
83 eqidd 2820 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
8481, 8, 82, 83ofc1 7424 . . . . . . . . . . . . . . . 16 ((𝜑𝑦 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) = (𝐴 · (𝐹𝑦)))
8584adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) = (𝐴 · (𝐹𝑦)))
8685oveq1d 7163 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴) = ((𝐴 · (𝐹𝑦)) / 𝐴))
876adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝐴 ≠ 0) → 𝐹:ℝ⟶ℝ)
8887ffvelrnda 6844 . . . . . . . . . . . . . . . 16 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
8988recnd 10661 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℂ)
9036adantr 483 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
91 simplr 767 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → 𝐴 ≠ 0)
9289, 90, 91divcan3d 11413 . . . . . . . . . . . . . 14 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → ((𝐴 · (𝐹𝑦)) / 𝐴) = (𝐹𝑦))
9386, 92eqtrd 2854 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴) = (𝐹𝑦))
9487ffnd 6508 . . . . . . . . . . . . . 14 ((𝜑𝐴 ≠ 0) → 𝐹 Fn ℝ)
95 fnfvelrn 6841 . . . . . . . . . . . . . 14 ((𝐹 Fn ℝ ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ran 𝐹)
9694, 95sylan 582 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ran 𝐹)
9793, 96eqeltrd 2911 . . . . . . . . . . . 12 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴) ∈ ran 𝐹)
9897ralrimiva 3180 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → ∀𝑦 ∈ ℝ ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴) ∈ ran 𝐹)
9930ffnd 6508 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → ((ℝ × {𝐴}) ∘f · 𝐹) Fn ℝ)
100 oveq1 7155 . . . . . . . . . . . . . 14 (𝑛 = (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) → (𝑛 / 𝐴) = ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴))
101100eleq1d 2895 . . . . . . . . . . . . 13 (𝑛 = (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) → ((𝑛 / 𝐴) ∈ ran 𝐹 ↔ ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴) ∈ ran 𝐹))
102101ralrn 6847 . . . . . . . . . . . 12 (((ℝ × {𝐴}) ∘f · 𝐹) Fn ℝ → (∀𝑛 ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹)(𝑛 / 𝐴) ∈ ran 𝐹 ↔ ∀𝑦 ∈ ℝ ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴) ∈ ran 𝐹))
10399, 102syl 17 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → (∀𝑛 ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹)(𝑛 / 𝐴) ∈ ran 𝐹 ↔ ∀𝑦 ∈ ℝ ((((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) / 𝐴) ∈ ran 𝐹))
10498, 103mpbird 259 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → ∀𝑛 ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹)(𝑛 / 𝐴) ∈ ran 𝐹)
105104r19.21bi 3206 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹)) → (𝑛 / 𝐴) ∈ ran 𝐹)
10680, 105sylan2 594 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑛 / 𝐴) ∈ ran 𝐹)
10732sselda 3965 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑛 ∈ ℝ)
108107recnd 10661 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑛 ∈ ℂ)
10936adantr 483 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ∈ ℂ)
110 eldifsni 4714 . . . . . . . . . 10 (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) → 𝑛 ≠ 0)
111110adantl 484 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑛 ≠ 0)
112 simplr 767 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝐴 ≠ 0)
113108, 109, 111, 112divne0d 11424 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑛 / 𝐴) ≠ 0)
114 eldifsn 4711 . . . . . . . 8 ((𝑛 / 𝐴) ∈ (ran 𝐹 ∖ {0}) ↔ ((𝑛 / 𝐴) ∈ ran 𝐹 ∧ (𝑛 / 𝐴) ≠ 0))
115106, 113, 114sylanbrc 585 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → (𝑛 / 𝐴) ∈ (ran 𝐹 ∖ {0}))
116 eldifi 4101 . . . . . . . . 9 (𝑘 ∈ (ran 𝐹 ∖ {0}) → 𝑘 ∈ ran 𝐹)
117 fnfvelrn 6841 . . . . . . . . . . . . . 14 ((((ℝ × {𝐴}) ∘f · 𝐹) Fn ℝ ∧ 𝑦 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
11899, 117sylan 582 . . . . . . . . . . . . 13 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (((ℝ × {𝐴}) ∘f · 𝐹)‘𝑦) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
11985, 118eqeltrrd 2912 . . . . . . . . . . . 12 (((𝜑𝐴 ≠ 0) ∧ 𝑦 ∈ ℝ) → (𝐴 · (𝐹𝑦)) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
120119ralrimiva 3180 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → ∀𝑦 ∈ ℝ (𝐴 · (𝐹𝑦)) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
121 oveq2 7156 . . . . . . . . . . . . . 14 (𝑘 = (𝐹𝑦) → (𝐴 · 𝑘) = (𝐴 · (𝐹𝑦)))
122121eleq1d 2895 . . . . . . . . . . . . 13 (𝑘 = (𝐹𝑦) → ((𝐴 · 𝑘) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹) ↔ (𝐴 · (𝐹𝑦)) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹)))
123122ralrn 6847 . . . . . . . . . . . 12 (𝐹 Fn ℝ → (∀𝑘 ∈ ran 𝐹(𝐴 · 𝑘) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹) ↔ ∀𝑦 ∈ ℝ (𝐴 · (𝐹𝑦)) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹)))
12494, 123syl 17 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → (∀𝑘 ∈ ran 𝐹(𝐴 · 𝑘) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹) ↔ ∀𝑦 ∈ ℝ (𝐴 · (𝐹𝑦)) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹)))
125120, 124mpbird 259 . . . . . . . . . 10 ((𝜑𝐴 ≠ 0) → ∀𝑘 ∈ ran 𝐹(𝐴 · 𝑘) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
126125r19.21bi 3206 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ ran 𝐹) → (𝐴 · 𝑘) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
127116, 126sylan2 594 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐴 · 𝑘) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹))
12836adantr 483 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ∈ ℂ)
12987frnd 6514 . . . . . . . . . . . 12 ((𝜑𝐴 ≠ 0) → ran 𝐹 ⊆ ℝ)
130129ssdifssd 4117 . . . . . . . . . . 11 ((𝜑𝐴 ≠ 0) → (ran 𝐹 ∖ {0}) ⊆ ℝ)
131130sselda 3965 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ)
132131recnd 10661 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ)
133 simplr 767 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ≠ 0)
134 eldifsni 4714 . . . . . . . . . 10 (𝑘 ∈ (ran 𝐹 ∖ {0}) → 𝑘 ≠ 0)
135134adantl 484 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ≠ 0)
136128, 132, 133, 135mulne0d 11284 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐴 · 𝑘) ≠ 0)
137 eldifsn 4711 . . . . . . . 8 ((𝐴 · 𝑘) ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ↔ ((𝐴 · 𝑘) ∈ ran ((ℝ × {𝐴}) ∘f · 𝐹) ∧ (𝐴 · 𝑘) ≠ 0))
138127, 136, 137sylanbrc 585 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐴 · 𝑘) ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}))
139 simpl 485 . . . . . . . . . . . 12 ((𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}))
140 ssel2 3960 . . . . . . . . . . . 12 (((ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ⊆ ℝ ∧ 𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → 𝑛 ∈ ℝ)
14132, 139, 140syl2an 597 . . . . . . . . . . 11 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → 𝑛 ∈ ℝ)
142141recnd 10661 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → 𝑛 ∈ ℂ)
1438ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → 𝐴 ∈ ℝ)
144143recnd 10661 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → 𝐴 ∈ ℂ)
145131adantrl 714 . . . . . . . . . . 11 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → 𝑘 ∈ ℝ)
146145recnd 10661 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → 𝑘 ∈ ℂ)
147 simplr 767 . . . . . . . . . 10 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → 𝐴 ≠ 0)
148142, 144, 146, 147divmuld 11430 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → ((𝑛 / 𝐴) = 𝑘 ↔ (𝐴 · 𝑘) = 𝑛))
149148bicomd 225 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → ((𝐴 · 𝑘) = 𝑛 ↔ (𝑛 / 𝐴) = 𝑘))
150 eqcom 2826 . . . . . . . 8 (𝑛 = (𝐴 · 𝑘) ↔ (𝐴 · 𝑘) = 𝑛)
151 eqcom 2826 . . . . . . . 8 (𝑘 = (𝑛 / 𝐴) ↔ (𝑛 / 𝐴) = 𝑘)
152149, 150, 1513bitr4g 316 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0}))) → (𝑛 = (𝐴 · 𝑘) ↔ 𝑘 = (𝑛 / 𝐴)))
15379, 115, 138, 152f1o2d 7391 . . . . . 6 ((𝜑𝐴 ≠ 0) → (𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ↦ (𝑛 / 𝐴)):(ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})–1-1-onto→(ran 𝐹 ∖ {0}))
154 oveq1 7155 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛 / 𝐴) = (𝑚 / 𝐴))
155 ovex 7181 . . . . . . . 8 (𝑚 / 𝐴) ∈ V
156154, 79, 155fvmpt 6761 . . . . . . 7 (𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) → ((𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ↦ (𝑛 / 𝐴))‘𝑚) = (𝑚 / 𝐴))
157156adantl 484 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})) → ((𝑛 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0}) ↦ (𝑛 / 𝐴))‘𝑚) = (𝑚 / 𝐴))
158 i1fima2sn 24273 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
15971, 158sylan 582 . . . . . . . 8 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
160131, 159remulcld 10663 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) ∈ ℝ)
161160recnd 10661 . . . . . 6 (((𝜑𝐴 ≠ 0) ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) ∈ ℂ)
16278, 65, 153, 157, 161fsumf1o 15072 . . . . 5 ((𝜑𝐴 ≠ 0) → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))) = Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)}))))
16373, 162eqtrd 2854 . . . 4 ((𝜑𝐴 ≠ 0) → (∫1𝐹) = Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)}))))
164163oveq2d 7164 . . 3 ((𝜑𝐴 ≠ 0) → (𝐴 · (∫1𝐹)) = (𝐴 · Σ𝑚 ∈ (ran ((ℝ × {𝐴}) ∘f · 𝐹) ∖ {0})((𝑚 / 𝐴) · (vol‘(𝐹 “ {(𝑚 / 𝐴)})))))
16568, 70, 1643eqtr4d 2864 . 2 ((𝜑𝐴 ≠ 0) → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫1𝐹)))
16626, 165pm2.61dane 3102 1 (𝜑 → (∫1‘((ℝ × {𝐴}) ∘f · 𝐹)) = (𝐴 · (∫1𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wne 3014  wral 3136  Vcvv 3493  cdif 3931  wss 3934  {csn 4559  cmpt 5137   × cxp 5546  ccnv 5547  dom cdm 5548  ran crn 5549  cima 5551   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7148  f cof 7399  Fincfn 8501  cc 10527  cr 10528  0cc0 10529   · cmul 10534   / cdiv 11289  Σcsu 15034  volcvol 24056  1citg1 24208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xadd 12500  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-xmet 20530  df-met 20531  df-ovol 24057  df-vol 24058  df-mbf 24212  df-itg1 24213
This theorem is referenced by:  itg1sub  24302  itg2const  24333  itg2mulclem  24339  itg2monolem1  24343  itg2addnclem  34935
  Copyright terms: Public domain W3C validator