| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1cl | Structured version Visualization version GIF version | ||
| Description: Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg1cl | ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1val 25631 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) | |
| 2 | i1frn 25625 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) | |
| 3 | difss 4085 | . . . 4 ⊢ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹 | |
| 4 | ssfi 9093 | . . . 4 ⊢ ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin) | |
| 5 | 2, 3, 4 | sylancl 586 | . . 3 ⊢ (𝐹 ∈ dom ∫1 → (ran 𝐹 ∖ {0}) ∈ Fin) |
| 6 | i1ff 25624 | . . . . . . 7 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
| 7 | 6 | frnd 6667 | . . . . . 6 ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ) |
| 8 | 7 | ssdifssd 4096 | . . . . 5 ⊢ (𝐹 ∈ dom ∫1 → (ran 𝐹 ∖ {0}) ⊆ ℝ) |
| 9 | 8 | sselda 3930 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 𝑥 ∈ ℝ) |
| 10 | i1fima2sn 25628 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑥})) ∈ ℝ) | |
| 11 | 9, 10 | remulcld 11153 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝑥 · (vol‘(◡𝐹 “ {𝑥}))) ∈ ℝ) |
| 12 | 5, 11 | fsumrecl 15648 | . 2 ⊢ (𝐹 ∈ dom ∫1 → Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥}))) ∈ ℝ) |
| 13 | 1, 12 | eqeltrd 2833 | 1 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 {csn 4577 ◡ccnv 5620 dom cdm 5621 ran crn 5622 “ cima 5624 ‘cfv 6489 (class class class)co 7355 Fincfn 8879 ℝcr 11016 0cc0 11017 · cmul 11022 Σcsu 15600 volcvol 25411 ∫1citg1 25563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-oi 9407 df-dju 9805 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-q 12853 df-rp 12897 df-xadd 13018 df-ioo 13256 df-ico 13258 df-icc 13259 df-fz 13415 df-fzo 13562 df-fl 13703 df-seq 13916 df-exp 13976 df-hash 14245 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-clim 15402 df-sum 15601 df-xmet 21293 df-met 21294 df-ovol 25412 df-vol 25413 df-mbf 25567 df-itg1 25568 |
| This theorem is referenced by: itg1mulc 25652 itg1sub 25657 itg1lea 25660 itg2lcl 25675 itg2itg1 25684 itg2seq 25690 itg2uba 25691 itg2mulclem 25694 itg2splitlem 25696 itg2split 25697 itg2monolem1 25698 itg2monolem2 25699 itg2monolem3 25700 itg2i1fseq2 25704 itg2addlem 25706 i1fibl 25756 itg2addnclem 37784 itg2addnc 37787 ftc1anclem5 37810 ftc1anclem7 37812 ftc1anclem8 37813 |
| Copyright terms: Public domain | W3C validator |