MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1cl Structured version   Visualization version   GIF version

Theorem itg1cl 25720
Description: Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
itg1cl (𝐹 ∈ dom ∫1 → (∫1𝐹) ∈ ℝ)

Proof of Theorem itg1cl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 itg1val 25718 . 2 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
2 i1frn 25712 . . . 4 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
3 difss 4136 . . . 4 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
4 ssfi 9213 . . . 4 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
52, 3, 4sylancl 586 . . 3 (𝐹 ∈ dom ∫1 → (ran 𝐹 ∖ {0}) ∈ Fin)
6 i1ff 25711 . . . . . . 7 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
76frnd 6744 . . . . . 6 (𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ)
87ssdifssd 4147 . . . . 5 (𝐹 ∈ dom ∫1 → (ran 𝐹 ∖ {0}) ⊆ ℝ)
98sselda 3983 . . . 4 ((𝐹 ∈ dom ∫1𝑥 ∈ (ran 𝐹 ∖ {0})) → 𝑥 ∈ ℝ)
10 i1fima2sn 25715 . . . 4 ((𝐹 ∈ dom ∫1𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
119, 10remulcld 11291 . . 3 ((𝐹 ∈ dom ∫1𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℝ)
125, 11fsumrecl 15770 . 2 (𝐹 ∈ dom ∫1 → Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℝ)
131, 12eqeltrd 2841 1 (𝐹 ∈ dom ∫1 → (∫1𝐹) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cdif 3948  wss 3951  {csn 4626  ccnv 5684  dom cdm 5685  ran crn 5686  cima 5688  cfv 6561  (class class class)co 7431  Fincfn 8985  cr 11154  0cc0 11155   · cmul 11160  Σcsu 15722  volcvol 25498  1citg1 25650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xadd 13155  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-xmet 21357  df-met 21358  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655
This theorem is referenced by:  itg1mulc  25739  itg1sub  25744  itg1lea  25747  itg2lcl  25762  itg2itg1  25771  itg2seq  25777  itg2uba  25778  itg2mulclem  25781  itg2splitlem  25783  itg2split  25784  itg2monolem1  25785  itg2monolem2  25786  itg2monolem3  25787  itg2i1fseq2  25791  itg2addlem  25793  i1fibl  25843  itg2addnclem  37678  itg2addnc  37681  ftc1anclem5  37704  ftc1anclem7  37706  ftc1anclem8  37707
  Copyright terms: Public domain W3C validator