| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1cl | Structured version Visualization version GIF version | ||
| Description: Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg1cl | ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1val 25641 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) | |
| 2 | i1frn 25635 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) | |
| 3 | difss 4116 | . . . 4 ⊢ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹 | |
| 4 | ssfi 9192 | . . . 4 ⊢ ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin) | |
| 5 | 2, 3, 4 | sylancl 586 | . . 3 ⊢ (𝐹 ∈ dom ∫1 → (ran 𝐹 ∖ {0}) ∈ Fin) |
| 6 | i1ff 25634 | . . . . . . 7 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
| 7 | 6 | frnd 6719 | . . . . . 6 ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ) |
| 8 | 7 | ssdifssd 4127 | . . . . 5 ⊢ (𝐹 ∈ dom ∫1 → (ran 𝐹 ∖ {0}) ⊆ ℝ) |
| 9 | 8 | sselda 3963 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 𝑥 ∈ ℝ) |
| 10 | i1fima2sn 25638 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑥})) ∈ ℝ) | |
| 11 | 9, 10 | remulcld 11270 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝑥 · (vol‘(◡𝐹 “ {𝑥}))) ∈ ℝ) |
| 12 | 5, 11 | fsumrecl 15755 | . 2 ⊢ (𝐹 ∈ dom ∫1 → Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥}))) ∈ ℝ) |
| 13 | 1, 12 | eqeltrd 2835 | 1 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3928 ⊆ wss 3931 {csn 4606 ◡ccnv 5658 dom cdm 5659 ran crn 5660 “ cima 5662 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 ℝcr 11133 0cc0 11134 · cmul 11139 Σcsu 15707 volcvol 25421 ∫1citg1 25573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-rp 13014 df-xadd 13134 df-ioo 13371 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 df-xmet 21313 df-met 21314 df-ovol 25422 df-vol 25423 df-mbf 25577 df-itg1 25578 |
| This theorem is referenced by: itg1mulc 25662 itg1sub 25667 itg1lea 25670 itg2lcl 25685 itg2itg1 25694 itg2seq 25700 itg2uba 25701 itg2mulclem 25704 itg2splitlem 25706 itg2split 25707 itg2monolem1 25708 itg2monolem2 25709 itg2monolem3 25710 itg2i1fseq2 25714 itg2addlem 25716 i1fibl 25766 itg2addnclem 37700 itg2addnc 37703 ftc1anclem5 37726 ftc1anclem7 37728 ftc1anclem8 37729 |
| Copyright terms: Public domain | W3C validator |