![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg1cl | Structured version Visualization version GIF version |
Description: Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
itg1cl | β’ (πΉ β dom β«1 β (β«1βπΉ) β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg1val 25200 | . 2 β’ (πΉ β dom β«1 β (β«1βπΉ) = Ξ£π₯ β (ran πΉ β {0})(π₯ Β· (volβ(β‘πΉ β {π₯})))) | |
2 | i1frn 25194 | . . . 4 β’ (πΉ β dom β«1 β ran πΉ β Fin) | |
3 | difss 4132 | . . . 4 β’ (ran πΉ β {0}) β ran πΉ | |
4 | ssfi 9173 | . . . 4 β’ ((ran πΉ β Fin β§ (ran πΉ β {0}) β ran πΉ) β (ran πΉ β {0}) β Fin) | |
5 | 2, 3, 4 | sylancl 587 | . . 3 β’ (πΉ β dom β«1 β (ran πΉ β {0}) β Fin) |
6 | i1ff 25193 | . . . . . . 7 β’ (πΉ β dom β«1 β πΉ:ββΆβ) | |
7 | 6 | frnd 6726 | . . . . . 6 β’ (πΉ β dom β«1 β ran πΉ β β) |
8 | 7 | ssdifssd 4143 | . . . . 5 β’ (πΉ β dom β«1 β (ran πΉ β {0}) β β) |
9 | 8 | sselda 3983 | . . . 4 β’ ((πΉ β dom β«1 β§ π₯ β (ran πΉ β {0})) β π₯ β β) |
10 | i1fima2sn 25197 | . . . 4 β’ ((πΉ β dom β«1 β§ π₯ β (ran πΉ β {0})) β (volβ(β‘πΉ β {π₯})) β β) | |
11 | 9, 10 | remulcld 11244 | . . 3 β’ ((πΉ β dom β«1 β§ π₯ β (ran πΉ β {0})) β (π₯ Β· (volβ(β‘πΉ β {π₯}))) β β) |
12 | 5, 11 | fsumrecl 15680 | . 2 β’ (πΉ β dom β«1 β Ξ£π₯ β (ran πΉ β {0})(π₯ Β· (volβ(β‘πΉ β {π₯}))) β β) |
13 | 1, 12 | eqeltrd 2834 | 1 β’ (πΉ β dom β«1 β (β«1βπΉ) β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β wcel 2107 β cdif 3946 β wss 3949 {csn 4629 β‘ccnv 5676 dom cdm 5677 ran crn 5678 β cima 5680 βcfv 6544 (class class class)co 7409 Fincfn 8939 βcr 11109 0cc0 11110 Β· cmul 11115 Ξ£csu 15632 volcvol 24980 β«1citg1 25132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-map 8822 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-oi 9505 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-q 12933 df-rp 12975 df-xadd 13093 df-ioo 13328 df-ico 13330 df-icc 13331 df-fz 13485 df-fzo 13628 df-fl 13757 df-seq 13967 df-exp 14028 df-hash 14291 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-clim 15432 df-sum 15633 df-xmet 20937 df-met 20938 df-ovol 24981 df-vol 24982 df-mbf 25136 df-itg1 25137 |
This theorem is referenced by: itg1mulc 25222 itg1sub 25227 itg1lea 25230 itg2lcl 25245 itg2itg1 25254 itg2seq 25260 itg2uba 25261 itg2mulclem 25264 itg2splitlem 25266 itg2split 25267 itg2monolem1 25268 itg2monolem2 25269 itg2monolem3 25270 itg2i1fseq2 25274 itg2addlem 25276 i1fibl 25325 itg2addnclem 36587 itg2addnc 36590 ftc1anclem5 36613 ftc1anclem7 36615 ftc1anclem8 36616 |
Copyright terms: Public domain | W3C validator |