| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg1cl | Structured version Visualization version GIF version | ||
| Description: Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| itg1cl | ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg1val 25560 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥})))) | |
| 2 | i1frn 25554 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) | |
| 3 | difss 4095 | . . . 4 ⊢ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹 | |
| 4 | ssfi 9114 | . . . 4 ⊢ ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin) | |
| 5 | 2, 3, 4 | sylancl 586 | . . 3 ⊢ (𝐹 ∈ dom ∫1 → (ran 𝐹 ∖ {0}) ∈ Fin) |
| 6 | i1ff 25553 | . . . . . . 7 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
| 7 | 6 | frnd 6678 | . . . . . 6 ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ⊆ ℝ) |
| 8 | 7 | ssdifssd 4106 | . . . . 5 ⊢ (𝐹 ∈ dom ∫1 → (ran 𝐹 ∖ {0}) ⊆ ℝ) |
| 9 | 8 | sselda 3943 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 𝑥 ∈ ℝ) |
| 10 | i1fima2sn 25557 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑥})) ∈ ℝ) | |
| 11 | 9, 10 | remulcld 11180 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝑥 · (vol‘(◡𝐹 “ {𝑥}))) ∈ ℝ) |
| 12 | 5, 11 | fsumrecl 15676 | . 2 ⊢ (𝐹 ∈ dom ∫1 → Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(◡𝐹 “ {𝑥}))) ∈ ℝ) |
| 13 | 1, 12 | eqeltrd 2828 | 1 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3908 ⊆ wss 3911 {csn 4585 ◡ccnv 5630 dom cdm 5631 ran crn 5632 “ cima 5634 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 ℝcr 11043 0cc0 11044 · cmul 11049 Σcsu 15628 volcvol 25340 ∫1citg1 25492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xadd 13049 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-xmet 21233 df-met 21234 df-ovol 25341 df-vol 25342 df-mbf 25496 df-itg1 25497 |
| This theorem is referenced by: itg1mulc 25581 itg1sub 25586 itg1lea 25589 itg2lcl 25604 itg2itg1 25613 itg2seq 25619 itg2uba 25620 itg2mulclem 25623 itg2splitlem 25625 itg2split 25626 itg2monolem1 25627 itg2monolem2 25628 itg2monolem3 25629 itg2i1fseq2 25633 itg2addlem 25635 i1fibl 25685 itg2addnclem 37638 itg2addnc 37641 ftc1anclem5 37664 ftc1anclem7 37666 ftc1anclem8 37667 |
| Copyright terms: Public domain | W3C validator |