![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccmax | Structured version Visualization version GIF version |
Description: The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.) |
Ref | Expression |
---|---|
iccmax | ⊢ (-∞[,]+∞) = ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 11267 | . . 3 ⊢ -∞ ∈ ℝ* | |
2 | pnfxr 11264 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | iccval 13359 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)}) | |
4 | 1, 2, 3 | mp2an 690 | . 2 ⊢ (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} |
5 | rabid2 3464 | . . 3 ⊢ (ℝ* = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} ↔ ∀𝑥 ∈ ℝ* (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)) | |
6 | mnfle 13110 | . . . 4 ⊢ (𝑥 ∈ ℝ* → -∞ ≤ 𝑥) | |
7 | pnfge 13106 | . . . 4 ⊢ (𝑥 ∈ ℝ* → 𝑥 ≤ +∞) | |
8 | 6, 7 | jca 512 | . . 3 ⊢ (𝑥 ∈ ℝ* → (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)) |
9 | 5, 8 | mprgbir 3068 | . 2 ⊢ ℝ* = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} |
10 | 4, 9 | eqtr4i 2763 | 1 ⊢ (-∞[,]+∞) = ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3432 class class class wbr 5147 (class class class)co 7405 +∞cpnf 11241 -∞cmnf 11242 ℝ*cxr 11243 ≤ cle 11245 [,]cicc 13323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-icc 13327 |
This theorem is referenced by: leordtval2 22707 lecldbas 22714 |
Copyright terms: Public domain | W3C validator |