| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iccmax | Structured version Visualization version GIF version | ||
| Description: The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| iccmax | ⊢ (-∞[,]+∞) = ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11231 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | pnfxr 11228 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | iccval 13345 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)}) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} |
| 5 | rabid2 3439 | . . 3 ⊢ (ℝ* = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} ↔ ∀𝑥 ∈ ℝ* (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)) | |
| 6 | mnfle 13095 | . . . 4 ⊢ (𝑥 ∈ ℝ* → -∞ ≤ 𝑥) | |
| 7 | pnfge 13090 | . . . 4 ⊢ (𝑥 ∈ ℝ* → 𝑥 ≤ +∞) | |
| 8 | 6, 7 | jca 511 | . . 3 ⊢ (𝑥 ∈ ℝ* → (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)) |
| 9 | 5, 8 | mprgbir 3051 | . 2 ⊢ ℝ* = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} |
| 10 | 4, 9 | eqtr4i 2755 | 1 ⊢ (-∞[,]+∞) = ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 class class class wbr 5107 (class class class)co 7387 +∞cpnf 11205 -∞cmnf 11206 ℝ*cxr 11207 ≤ cle 11209 [,]cicc 13309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-icc 13313 |
| This theorem is referenced by: leordtval2 23099 lecldbas 23106 |
| Copyright terms: Public domain | W3C validator |