![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccmax | Structured version Visualization version GIF version |
Description: The closed interval from minus to plus infinity. (Contributed by Mario Carneiro, 4-Jul-2014.) |
Ref | Expression |
---|---|
iccmax | ⊢ (-∞[,]+∞) = ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 11347 | . . 3 ⊢ -∞ ∈ ℝ* | |
2 | pnfxr 11344 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | iccval 13446 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)}) | |
4 | 1, 2, 3 | mp2an 691 | . 2 ⊢ (-∞[,]+∞) = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} |
5 | rabid2 3478 | . . 3 ⊢ (ℝ* = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} ↔ ∀𝑥 ∈ ℝ* (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)) | |
6 | mnfle 13197 | . . . 4 ⊢ (𝑥 ∈ ℝ* → -∞ ≤ 𝑥) | |
7 | pnfge 13193 | . . . 4 ⊢ (𝑥 ∈ ℝ* → 𝑥 ≤ +∞) | |
8 | 6, 7 | jca 511 | . . 3 ⊢ (𝑥 ∈ ℝ* → (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)) |
9 | 5, 8 | mprgbir 3074 | . 2 ⊢ ℝ* = {𝑥 ∈ ℝ* ∣ (-∞ ≤ 𝑥 ∧ 𝑥 ≤ +∞)} |
10 | 4, 9 | eqtr4i 2771 | 1 ⊢ (-∞[,]+∞) = ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 class class class wbr 5166 (class class class)co 7448 +∞cpnf 11321 -∞cmnf 11322 ℝ*cxr 11323 ≤ cle 11325 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-icc 13414 |
This theorem is referenced by: leordtval2 23241 lecldbas 23248 |
Copyright terms: Public domain | W3C validator |