| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioomax | Structured version Visualization version GIF version | ||
| Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| ioomax | ⊢ (-∞(,)+∞) = ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11231 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | pnfxr 11228 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | iooval2 13339 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)}) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} |
| 5 | rabid2 3439 | . . 3 ⊢ (ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} ↔ ∀𝑥 ∈ ℝ (-∞ < 𝑥 ∧ 𝑥 < +∞)) | |
| 6 | mnflt 13083 | . . . 4 ⊢ (𝑥 ∈ ℝ → -∞ < 𝑥) | |
| 7 | ltpnf 13080 | . . . 4 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
| 8 | 6, 7 | jca 511 | . . 3 ⊢ (𝑥 ∈ ℝ → (-∞ < 𝑥 ∧ 𝑥 < +∞)) |
| 9 | 5, 8 | mprgbir 3051 | . 2 ⊢ ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} |
| 10 | 4, 9 | eqtr4i 2755 | 1 ⊢ (-∞(,)+∞) = ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 +∞cpnf 11205 -∞cmnf 11206 ℝ*cxr 11207 < clt 11208 (,)cioo 13306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 |
| This theorem is referenced by: unirnioo 13410 resup 13829 reordt 23105 icopnfcld 24655 iocmnfcld 24656 blssioo 24683 reconnlem1 24715 ioombl1 25463 ioombl 25466 mbfdm 25527 ismbf 25529 ismbf2d 25541 ismbf3d 25555 tpr2rico 33902 esumcvgsum 34078 itgexpif 34597 retopsconn 35236 asindmre 37697 itgsubsticclem 45973 |
| Copyright terms: Public domain | W3C validator |