| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioomax | Structured version Visualization version GIF version | ||
| Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| ioomax | ⊢ (-∞(,)+∞) = ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11191 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | pnfxr 11188 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | iooval2 13299 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)}) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} |
| 5 | rabid2 3430 | . . 3 ⊢ (ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} ↔ ∀𝑥 ∈ ℝ (-∞ < 𝑥 ∧ 𝑥 < +∞)) | |
| 6 | mnflt 13043 | . . . 4 ⊢ (𝑥 ∈ ℝ → -∞ < 𝑥) | |
| 7 | ltpnf 13040 | . . . 4 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
| 8 | 6, 7 | jca 511 | . . 3 ⊢ (𝑥 ∈ ℝ → (-∞ < 𝑥 ∧ 𝑥 < +∞)) |
| 9 | 5, 8 | mprgbir 3051 | . 2 ⊢ ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} |
| 10 | 4, 9 | eqtr4i 2755 | 1 ⊢ (-∞(,)+∞) = ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 class class class wbr 5095 (class class class)co 7353 ℝcr 11027 +∞cpnf 11165 -∞cmnf 11166 ℝ*cxr 11167 < clt 11168 (,)cioo 13266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-ioo 13270 |
| This theorem is referenced by: unirnioo 13370 resup 13789 reordt 23121 icopnfcld 24671 iocmnfcld 24672 blssioo 24699 reconnlem1 24731 ioombl1 25479 ioombl 25482 mbfdm 25543 ismbf 25545 ismbf2d 25557 ismbf3d 25571 tpr2rico 33881 esumcvgsum 34057 itgexpif 34576 retopsconn 35224 asindmre 37685 itgsubsticclem 45960 |
| Copyright terms: Public domain | W3C validator |