![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioomax | Structured version Visualization version GIF version |
Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
ioomax | ⊢ (-∞(,)+∞) = ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 11276 | . . 3 ⊢ -∞ ∈ ℝ* | |
2 | pnfxr 11273 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | iooval2 13362 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)}) | |
4 | 1, 2, 3 | mp2an 689 | . 2 ⊢ (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} |
5 | rabid2 3463 | . . 3 ⊢ (ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} ↔ ∀𝑥 ∈ ℝ (-∞ < 𝑥 ∧ 𝑥 < +∞)) | |
6 | mnflt 13108 | . . . 4 ⊢ (𝑥 ∈ ℝ → -∞ < 𝑥) | |
7 | ltpnf 13105 | . . . 4 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
8 | 6, 7 | jca 511 | . . 3 ⊢ (𝑥 ∈ ℝ → (-∞ < 𝑥 ∧ 𝑥 < +∞)) |
9 | 5, 8 | mprgbir 3067 | . 2 ⊢ ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} |
10 | 4, 9 | eqtr4i 2762 | 1 ⊢ (-∞(,)+∞) = ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 {crab 3431 class class class wbr 5148 (class class class)co 7412 ℝcr 11113 +∞cpnf 11250 -∞cmnf 11251 ℝ*cxr 11252 < clt 11253 (,)cioo 13329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-pre-lttri 11188 ax-pre-lttrn 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-ioo 13333 |
This theorem is referenced by: unirnioo 13431 resup 13837 reordt 22943 icopnfcld 24505 iocmnfcld 24506 blssioo 24532 reconnlem1 24563 ioombl1 25312 ioombl 25315 mbfdm 25376 ismbf 25378 ismbf2d 25390 ismbf3d 25404 tpr2rico 33191 esumcvgsum 33385 itgexpif 33917 retopsconn 34539 asindmre 36875 itgsubsticclem 44990 |
Copyright terms: Public domain | W3C validator |