| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioomax | Structured version Visualization version GIF version | ||
| Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| ioomax | ⊢ (-∞(,)+∞) = ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11178 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | pnfxr 11175 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | iooval2 13282 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)}) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} |
| 5 | rabid2 3429 | . . 3 ⊢ (ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} ↔ ∀𝑥 ∈ ℝ (-∞ < 𝑥 ∧ 𝑥 < +∞)) | |
| 6 | mnflt 13026 | . . . 4 ⊢ (𝑥 ∈ ℝ → -∞ < 𝑥) | |
| 7 | ltpnf 13023 | . . . 4 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
| 8 | 6, 7 | jca 511 | . . 3 ⊢ (𝑥 ∈ ℝ → (-∞ < 𝑥 ∧ 𝑥 < +∞)) |
| 9 | 5, 8 | mprgbir 3055 | . 2 ⊢ ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} |
| 10 | 4, 9 | eqtr4i 2759 | 1 ⊢ (-∞(,)+∞) = ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 class class class wbr 5095 (class class class)co 7354 ℝcr 11014 +∞cpnf 11152 -∞cmnf 11153 ℝ*cxr 11154 < clt 11155 (,)cioo 13249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-pre-lttri 11089 ax-pre-lttrn 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-ioo 13253 |
| This theorem is referenced by: unirnioo 13353 resup 13775 reordt 23136 icopnfcld 24685 iocmnfcld 24686 blssioo 24713 reconnlem1 24745 ioombl1 25493 ioombl 25496 mbfdm 25557 ismbf 25559 ismbf2d 25571 ismbf3d 25585 tpr2rico 33948 esumcvgsum 34124 itgexpif 34642 retopsconn 35316 asindmre 37766 itgsubsticclem 46100 |
| Copyright terms: Public domain | W3C validator |