![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioomax | Structured version Visualization version GIF version |
Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
ioomax | ⊢ (-∞(,)+∞) = ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 10384 | . . 3 ⊢ -∞ ∈ ℝ* | |
2 | pnfxr 10380 | . . 3 ⊢ +∞ ∈ ℝ* | |
3 | iooval2 12453 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)}) | |
4 | 1, 2, 3 | mp2an 684 | . 2 ⊢ (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} |
5 | rabid2 3298 | . . 3 ⊢ (ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} ↔ ∀𝑥 ∈ ℝ (-∞ < 𝑥 ∧ 𝑥 < +∞)) | |
6 | mnflt 12200 | . . . 4 ⊢ (𝑥 ∈ ℝ → -∞ < 𝑥) | |
7 | ltpnf 12197 | . . . 4 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
8 | 6, 7 | jca 508 | . . 3 ⊢ (𝑥 ∈ ℝ → (-∞ < 𝑥 ∧ 𝑥 < +∞)) |
9 | 5, 8 | mprgbir 3106 | . 2 ⊢ ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} |
10 | 4, 9 | eqtr4i 2822 | 1 ⊢ (-∞(,)+∞) = ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 385 = wceq 1653 ∈ wcel 2157 {crab 3091 class class class wbr 4841 (class class class)co 6876 ℝcr 10221 +∞cpnf 10358 -∞cmnf 10359 ℝ*cxr 10360 < clt 10361 (,)cioo 12420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-pre-lttri 10296 ax-pre-lttrn 10297 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-po 5231 df-so 5232 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-1st 7399 df-2nd 7400 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-ioo 12424 |
This theorem is referenced by: unirnioo 12519 resup 12917 reordt 21348 icopnfcld 22896 iocmnfcld 22897 blssioo 22923 reconnlem1 22954 ioombl1 23667 ioombl 23670 mbfdm 23731 ismbf 23733 ismbf2d 23745 ismbf3d 23759 tpr2rico 30466 esumcvgsum 30658 itgexpif 31196 retopsconn 31740 asindmre 33975 itgsubsticclem 40922 |
Copyright terms: Public domain | W3C validator |