| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioomax | Structured version Visualization version GIF version | ||
| Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| ioomax | ⊢ (-∞(,)+∞) = ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11169 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | pnfxr 11166 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 3 | iooval2 13278 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)}) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} |
| 5 | rabid2 3428 | . . 3 ⊢ (ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} ↔ ∀𝑥 ∈ ℝ (-∞ < 𝑥 ∧ 𝑥 < +∞)) | |
| 6 | mnflt 13022 | . . . 4 ⊢ (𝑥 ∈ ℝ → -∞ < 𝑥) | |
| 7 | ltpnf 13019 | . . . 4 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
| 8 | 6, 7 | jca 511 | . . 3 ⊢ (𝑥 ∈ ℝ → (-∞ < 𝑥 ∧ 𝑥 < +∞)) |
| 9 | 5, 8 | mprgbir 3054 | . 2 ⊢ ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥 ∧ 𝑥 < +∞)} |
| 10 | 4, 9 | eqtr4i 2757 | 1 ⊢ (-∞(,)+∞) = ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 class class class wbr 5091 (class class class)co 7346 ℝcr 11005 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 < clt 11146 (,)cioo 13245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ioo 13249 |
| This theorem is referenced by: unirnioo 13349 resup 13771 reordt 23134 icopnfcld 24683 iocmnfcld 24684 blssioo 24711 reconnlem1 24743 ioombl1 25491 ioombl 25494 mbfdm 25555 ismbf 25557 ismbf2d 25569 ismbf3d 25583 tpr2rico 33923 esumcvgsum 34099 itgexpif 34617 retopsconn 35291 asindmre 37749 itgsubsticclem 46019 |
| Copyright terms: Public domain | W3C validator |