MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioomax Structured version   Visualization version   GIF version

Theorem ioomax 13154
Description: The open interval from minus to plus infinity. (Contributed by NM, 6-Feb-2007.)
Assertion
Ref Expression
ioomax (-∞(,)+∞) = ℝ

Proof of Theorem ioomax
StepHypRef Expression
1 mnfxr 11032 . . 3 -∞ ∈ ℝ*
2 pnfxr 11029 . . 3 +∞ ∈ ℝ*
3 iooval2 13112 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)})
41, 2, 3mp2an 689 . 2 (-∞(,)+∞) = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)}
5 rabid2 3314 . . 3 (ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)} ↔ ∀𝑥 ∈ ℝ (-∞ < 𝑥𝑥 < +∞))
6 mnflt 12859 . . . 4 (𝑥 ∈ ℝ → -∞ < 𝑥)
7 ltpnf 12856 . . . 4 (𝑥 ∈ ℝ → 𝑥 < +∞)
86, 7jca 512 . . 3 (𝑥 ∈ ℝ → (-∞ < 𝑥𝑥 < +∞))
95, 8mprgbir 3079 . 2 ℝ = {𝑥 ∈ ℝ ∣ (-∞ < 𝑥𝑥 < +∞)}
104, 9eqtr4i 2769 1 (-∞(,)+∞) = ℝ
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  {crab 3068   class class class wbr 5074  (class class class)co 7275  cr 10870  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  (,)cioo 13079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ioo 13083
This theorem is referenced by:  unirnioo  13181  resup  13587  reordt  22369  icopnfcld  23931  iocmnfcld  23932  blssioo  23958  reconnlem1  23989  ioombl1  24726  ioombl  24729  mbfdm  24790  ismbf  24792  ismbf2d  24804  ismbf3d  24818  tpr2rico  31862  esumcvgsum  32056  itgexpif  32586  retopsconn  33211  asindmre  35860  itgsubsticclem  43516
  Copyright terms: Public domain W3C validator