MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfle Structured version   Visualization version   GIF version

Theorem mnfle 12852
Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
mnfle (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)

Proof of Theorem mnfle
StepHypRef Expression
1 nltmnf 12847 . 2 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2 mnfxr 11016 . . 3 -∞ ∈ ℝ*
3 xrlenlt 11024 . . 3 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞))
42, 3mpan 686 . 2 (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞))
51, 4mpbird 256 1 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wcel 2109   class class class wbr 5078  -∞cmnf 10991  *cxr 10992   < clt 10993  cle 10994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999
This theorem is referenced by:  ngtmnft  12882  xrre2  12886  xleadd1a  12969  xlt2add  12976  xsubge0  12977  xlesubadd  12979  xlemul1a  13004  supxrmnf  13033  elioc2  13124  iccmax  13137  xrsdsreclblem  20625  leordtvallem2  22343  lecldbas  22351  tgioo  23940  xrtgioo  23950  ioombl  24710  ismbfd  24784  degltlem1  25218  ply1rem  25309  xrdifh  31080  tpr2rico  31841  itg2gt0cn  35811  hbtlem2  40929  supxrgelem  42830  supxrge  42831  suplesup  42832  xrlexaddrp  42845  infxr  42860  infleinf  42865  mnfled  42882  eliocre  43001  fouriersw  43726
  Copyright terms: Public domain W3C validator