MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfle Structured version   Visualization version   GIF version

Theorem mnfle 12279
Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
mnfle (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)

Proof of Theorem mnfle
StepHypRef Expression
1 nltmnf 12274 . 2 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2 mnfxr 10434 . . 3 -∞ ∈ ℝ*
3 xrlenlt 10442 . . 3 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞))
42, 3mpan 680 . 2 (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞))
51, 4mpbird 249 1 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wcel 2107   class class class wbr 4886  -∞cmnf 10409  *cxr 10410   < clt 10411  cle 10412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417
This theorem is referenced by:  ngtmnft  12309  xrre2  12313  xleadd1a  12395  xlt2add  12402  xsubge0  12403  xlesubadd  12405  xlemul1a  12430  supxrmnf  12459  elioc2  12548  iccmax  12561  xrsdsreclblem  20188  leordtvallem2  21423  lecldbas  21431  tgioo  23007  xrtgioo  23017  ioombl  23769  ismbfd  23843  degltlem1  24269  ply1rem  24360  xrdifh  30106  tpr2rico  30556  itg2gt0cn  34090  hbtlem2  38653  supxrgelem  40461  supxrge  40462  suplesup  40463  xrlexaddrp  40476  infxr  40491  infleinf  40496  mnfled  40517  eliocre  40644  fouriersw  41375
  Copyright terms: Public domain W3C validator