MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfle Structured version   Visualization version   GIF version

Theorem mnfle 13156
Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
mnfle (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)

Proof of Theorem mnfle
StepHypRef Expression
1 nltmnf 13150 . 2 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2 mnfxr 11297 . . 3 -∞ ∈ ℝ*
3 xrlenlt 11305 . . 3 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞))
42, 3mpan 690 . 2 (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞))
51, 4mpbird 257 1 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2109   class class class wbr 5124  -∞cmnf 11272  *cxr 11273   < clt 11274  cle 11275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280
This theorem is referenced by:  mnfled  13157  ngtmnft  13187  xrre2  13191  xleadd1a  13274  xlt2add  13281  xsubge0  13282  xlesubadd  13284  xlemul1a  13309  supxrmnf  13338  elioc2  13431  iccmax  13445  xrsdsreclblem  21385  leordtvallem2  23154  lecldbas  23162  tgioo  24740  xrtgioo  24751  ioombl  25523  ismbfd  25597  degltlem1  26034  ply1rem  26128  xrdifh  32762  tpr2rico  33948  itg2gt0cn  37704  hbtlem2  43115  supxrgelem  45331  supxrge  45332  suplesup  45333  xrlexaddrp  45346  infxr  45361  infleinf  45366  eliocre  45505  fouriersw  46227
  Copyright terms: Public domain W3C validator