MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfle Structured version   Visualization version   GIF version

Theorem mnfle 13102
Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
mnfle (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)

Proof of Theorem mnfle
StepHypRef Expression
1 nltmnf 13096 . 2 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2 mnfxr 11238 . . 3 -∞ ∈ ℝ*
3 xrlenlt 11246 . . 3 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞))
42, 3mpan 690 . 2 (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞))
51, 4mpbird 257 1 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2109   class class class wbr 5110  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221
This theorem is referenced by:  mnfled  13103  ngtmnft  13133  xrre2  13137  xleadd1a  13220  xlt2add  13227  xsubge0  13228  xlesubadd  13230  xlemul1a  13255  supxrmnf  13284  elioc2  13377  iccmax  13391  xrsdsreclblem  21336  leordtvallem2  23105  lecldbas  23113  tgioo  24691  xrtgioo  24702  ioombl  25473  ismbfd  25547  degltlem1  25984  ply1rem  26078  xrdifh  32710  tpr2rico  33909  itg2gt0cn  37676  hbtlem2  43120  supxrgelem  45340  supxrge  45341  suplesup  45342  xrlexaddrp  45355  infxr  45370  infleinf  45375  eliocre  45514  fouriersw  46236
  Copyright terms: Public domain W3C validator