Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnfle | Structured version Visualization version GIF version |
Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.) |
Ref | Expression |
---|---|
mnfle | ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nltmnf 12911 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | |
2 | mnfxr 11078 | . . 3 ⊢ -∞ ∈ ℝ* | |
3 | xrlenlt 11086 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) | |
4 | 2, 3 | mpan 688 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) |
5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2104 class class class wbr 5081 -∞cmnf 11053 ℝ*cxr 11054 < clt 11055 ≤ cle 11056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 |
This theorem is referenced by: ngtmnft 12946 xrre2 12950 xleadd1a 13033 xlt2add 13040 xsubge0 13041 xlesubadd 13043 xlemul1a 13068 supxrmnf 13097 elioc2 13188 iccmax 13201 xrsdsreclblem 20689 leordtvallem2 22407 lecldbas 22415 tgioo 24004 xrtgioo 24014 ioombl 24774 ismbfd 24848 degltlem1 25282 ply1rem 25373 xrdifh 31146 tpr2rico 31907 itg2gt0cn 35876 hbtlem2 40987 supxrgelem 42924 supxrge 42925 suplesup 42926 xrlexaddrp 42939 infxr 42954 infleinf 42959 mnfled 42976 eliocre 43096 fouriersw 43821 |
Copyright terms: Public domain | W3C validator |