| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfle | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.) |
| Ref | Expression |
|---|---|
| mnfle | ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltmnf 13049 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | |
| 2 | mnfxr 11191 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 3 | xrlenlt 11199 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) | |
| 4 | 2, 3 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5095 -∞cmnf 11166 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 |
| This theorem is referenced by: mnfled 13056 ngtmnft 13086 xrre2 13090 xleadd1a 13173 xlt2add 13180 xsubge0 13181 xlesubadd 13183 xlemul1a 13208 supxrmnf 13237 elioc2 13330 iccmax 13344 xrsdsreclblem 21337 leordtvallem2 23114 lecldbas 23122 tgioo 24700 xrtgioo 24711 ioombl 25482 ismbfd 25556 degltlem1 25993 ply1rem 26087 xrdifh 32736 tpr2rico 33878 itg2gt0cn 37654 hbtlem2 43097 supxrgelem 45317 supxrge 45318 suplesup 45319 xrlexaddrp 45332 infxr 45347 infleinf 45352 eliocre 45491 fouriersw 46213 |
| Copyright terms: Public domain | W3C validator |