Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnfle | Structured version Visualization version GIF version |
Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.) |
Ref | Expression |
---|---|
mnfle | ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nltmnf 12875 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | |
2 | mnfxr 11042 | . . 3 ⊢ -∞ ∈ ℝ* | |
3 | xrlenlt 11050 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) | |
4 | 2, 3 | mpan 687 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) |
5 | 1, 4 | mpbird 256 | 1 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2106 class class class wbr 5073 -∞cmnf 11017 ℝ*cxr 11018 < clt 11019 ≤ cle 11020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 |
This theorem is referenced by: ngtmnft 12910 xrre2 12914 xleadd1a 12997 xlt2add 13004 xsubge0 13005 xlesubadd 13007 xlemul1a 13032 supxrmnf 13061 elioc2 13152 iccmax 13165 xrsdsreclblem 20654 leordtvallem2 22372 lecldbas 22380 tgioo 23969 xrtgioo 23979 ioombl 24739 ismbfd 24813 degltlem1 25247 ply1rem 25338 xrdifh 31109 tpr2rico 31870 itg2gt0cn 35840 hbtlem2 40957 supxrgelem 42857 supxrge 42858 suplesup 42859 xrlexaddrp 42872 infxr 42887 infleinf 42892 mnfled 42909 eliocre 43028 fouriersw 43753 |
Copyright terms: Public domain | W3C validator |