| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfle | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.) |
| Ref | Expression |
|---|---|
| mnfle | ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltmnf 13025 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | |
| 2 | mnfxr 11166 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 3 | xrlenlt 11174 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) | |
| 4 | 2, 3 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2111 class class class wbr 5091 -∞cmnf 11141 ℝ*cxr 11142 < clt 11143 ≤ cle 11144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 |
| This theorem is referenced by: mnfled 13032 ngtmnft 13062 xrre2 13066 xleadd1a 13149 xlt2add 13156 xsubge0 13157 xlesubadd 13159 xlemul1a 13184 supxrmnf 13213 elioc2 13306 iccmax 13320 xrsdsreclblem 21347 leordtvallem2 23124 lecldbas 23132 tgioo 24709 xrtgioo 24720 ioombl 25491 ismbfd 25565 degltlem1 26002 ply1rem 26096 xrdifh 32758 tpr2rico 33920 itg2gt0cn 37714 hbtlem2 43156 supxrgelem 45375 supxrge 45376 suplesup 45377 xrlexaddrp 45390 infxr 45404 infleinf 45409 eliocre 45548 fouriersw 46268 |
| Copyright terms: Public domain | W3C validator |