| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnfle | Structured version Visualization version GIF version | ||
| Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.) |
| Ref | Expression |
|---|---|
| mnfle | ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nltmnf 13096 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | |
| 2 | mnfxr 11238 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 3 | xrlenlt 11246 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) | |
| 4 | 2, 3 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) |
| 5 | 1, 4 | mpbird 257 | 1 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 class class class wbr 5110 -∞cmnf 11213 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: mnfled 13103 ngtmnft 13133 xrre2 13137 xleadd1a 13220 xlt2add 13227 xsubge0 13228 xlesubadd 13230 xlemul1a 13255 supxrmnf 13284 elioc2 13377 iccmax 13391 xrsdsreclblem 21336 leordtvallem2 23105 lecldbas 23113 tgioo 24691 xrtgioo 24702 ioombl 25473 ismbfd 25547 degltlem1 25984 ply1rem 26078 xrdifh 32710 tpr2rico 33909 itg2gt0cn 37676 hbtlem2 43120 supxrgelem 45340 supxrge 45341 suplesup 45342 xrlexaddrp 45355 infxr 45370 infleinf 45375 eliocre 45514 fouriersw 46236 |
| Copyright terms: Public domain | W3C validator |