Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mnfle | Structured version Visualization version GIF version |
Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.) |
Ref | Expression |
---|---|
mnfle | ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nltmnf 12847 | . 2 ⊢ (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞) | |
2 | mnfxr 11016 | . . 3 ⊢ -∞ ∈ ℝ* | |
3 | xrlenlt 11024 | . . 3 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) | |
4 | 2, 3 | mpan 686 | . 2 ⊢ (𝐴 ∈ ℝ* → (-∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞)) |
5 | 1, 4 | mpbird 256 | 1 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∈ wcel 2109 class class class wbr 5078 -∞cmnf 10991 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 |
This theorem is referenced by: ngtmnft 12882 xrre2 12886 xleadd1a 12969 xlt2add 12976 xsubge0 12977 xlesubadd 12979 xlemul1a 13004 supxrmnf 13033 elioc2 13124 iccmax 13137 xrsdsreclblem 20625 leordtvallem2 22343 lecldbas 22351 tgioo 23940 xrtgioo 23950 ioombl 24710 ismbfd 24784 degltlem1 25218 ply1rem 25309 xrdifh 31080 tpr2rico 31841 itg2gt0cn 35811 hbtlem2 40929 supxrgelem 42830 supxrge 42831 suplesup 42832 xrlexaddrp 42845 infxr 42860 infleinf 42865 mnfled 42882 eliocre 43001 fouriersw 43726 |
Copyright terms: Public domain | W3C validator |