MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resthauslem Structured version   Visualization version   GIF version

Theorem resthauslem 22422
Description: Lemma for resthaus 22427 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
resthauslem.1 (𝐽𝐴𝐽 ∈ Top)
resthauslem.2 ((𝐽𝐴 ∧ ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽) ∧ ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽)) → (𝐽t 𝑆) ∈ 𝐴)
Assertion
Ref Expression
resthauslem ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) ∈ 𝐴)

Proof of Theorem resthauslem
StepHypRef Expression
1 simpl 482 . 2 ((𝐽𝐴𝑆𝑉) → 𝐽𝐴)
2 f1oi 6737 . . 3 ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1-onto→(𝑆 𝐽)
3 f1of1 6699 . . 3 (( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1-onto→(𝑆 𝐽) → ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽))
42, 3mp1i 13 . 2 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽))
5 inss2 4160 . . . . 5 (𝑆 𝐽) ⊆ 𝐽
6 resabs1 5910 . . . . 5 ((𝑆 𝐽) ⊆ 𝐽 → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) = ( I ↾ (𝑆 𝐽)))
75, 6ax-mp 5 . . . 4 (( I ↾ 𝐽) ↾ (𝑆 𝐽)) = ( I ↾ (𝑆 𝐽))
8 resthauslem.1 . . . . . . . 8 (𝐽𝐴𝐽 ∈ Top)
98adantr 480 . . . . . . 7 ((𝐽𝐴𝑆𝑉) → 𝐽 ∈ Top)
10 toptopon2 21975 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
119, 10sylib 217 . . . . . 6 ((𝐽𝐴𝑆𝑉) → 𝐽 ∈ (TopOn‘ 𝐽))
12 idcn 22316 . . . . . 6 (𝐽 ∈ (TopOn‘ 𝐽) → ( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽))
1311, 12syl 17 . . . . 5 ((𝐽𝐴𝑆𝑉) → ( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽))
14 eqid 2738 . . . . . 6 𝐽 = 𝐽
1514cnrest 22344 . . . . 5 ((( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽) ∧ (𝑆 𝐽) ⊆ 𝐽) → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
1613, 5, 15sylancl 585 . . . 4 ((𝐽𝐴𝑆𝑉) → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
177, 16eqeltrrid 2844 . . 3 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
1814restin 22225 . . . 4 ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) = (𝐽t (𝑆 𝐽)))
1918oveq1d 7270 . . 3 ((𝐽𝐴𝑆𝑉) → ((𝐽t 𝑆) Cn 𝐽) = ((𝐽t (𝑆 𝐽)) Cn 𝐽))
2017, 19eleqtrrd 2842 . 2 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽))
21 resthauslem.2 . 2 ((𝐽𝐴 ∧ ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽) ∧ ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽)) → (𝐽t 𝑆) ∈ 𝐴)
221, 4, 20, 21syl3anc 1369 1 ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cin 3882  wss 3883   cuni 4836   I cid 5479  cres 5582  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  t crest 17048  Topctop 21950  TopOnctopon 21967   Cn ccn 22283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-map 8575  df-en 8692  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286
This theorem is referenced by:  restt0  22425  restt1  22426  resthaus  22427
  Copyright terms: Public domain W3C validator