![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resthauslem | Structured version Visualization version GIF version |
Description: Lemma for resthaus 23397 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
resthauslem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
resthauslem.2 | ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽) ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
Ref | Expression |
---|---|
resthauslem | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ 𝐴) | |
2 | f1oi 6900 | . . 3 ⊢ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1-onto→(𝑆 ∩ ∪ 𝐽) | |
3 | f1of1 6861 | . . 3 ⊢ (( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1-onto→(𝑆 ∩ ∪ 𝐽) → ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽)) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽)) |
5 | inss2 4259 | . . . . 5 ⊢ (𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
6 | resabs1 6036 | . . . . 5 ⊢ ((𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) = ( I ↾ (𝑆 ∩ ∪ 𝐽))) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) = ( I ↾ (𝑆 ∩ ∪ 𝐽)) |
8 | resthauslem.1 | . . . . . . . 8 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) | |
9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ Top) |
10 | toptopon2 22945 | . . . . . . 7 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
11 | 9, 10 | sylib 218 | . . . . . 6 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
12 | idcn 23286 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → ( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽)) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽)) |
14 | eqid 2740 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
15 | 14 | cnrest 23314 | . . . . 5 ⊢ ((( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽) ∧ (𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽) → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
16 | 13, 5, 15 | sylancl 585 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
17 | 7, 16 | eqeltrrid 2849 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
18 | 14 | restin 23195 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) = (𝐽 ↾t (𝑆 ∩ ∪ 𝐽))) |
19 | 18 | oveq1d 7463 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ((𝐽 ↾t 𝑆) Cn 𝐽) = ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
20 | 17, 19 | eleqtrrd 2847 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) |
21 | resthauslem.2 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽) ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) → (𝐽 ↾t 𝑆) ∈ 𝐴) | |
22 | 1, 4, 20, 21 | syl3anc 1371 | 1 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 ∪ cuni 4931 I cid 5592 ↾ cres 5702 –1-1→wf1 6570 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ↾t crest 17480 Topctop 22920 TopOnctopon 22937 Cn ccn 23253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-map 8886 df-en 9004 df-fin 9007 df-fi 9480 df-rest 17482 df-topgen 17503 df-top 22921 df-topon 22938 df-bases 22974 df-cn 23256 |
This theorem is referenced by: restt0 23395 restt1 23396 resthaus 23397 |
Copyright terms: Public domain | W3C validator |