![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resthauslem | Structured version Visualization version GIF version |
Description: Lemma for resthaus 21500 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
resthauslem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
resthauslem.2 | ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽) ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
Ref | Expression |
---|---|
resthauslem | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 475 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ 𝐴) | |
2 | f1oi 6394 | . . 3 ⊢ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1-onto→(𝑆 ∩ ∪ 𝐽) | |
3 | f1of1 6356 | . . 3 ⊢ (( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1-onto→(𝑆 ∩ ∪ 𝐽) → ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽)) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽)) |
5 | inss2 4030 | . . . . 5 ⊢ (𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
6 | resabs1 5638 | . . . . 5 ⊢ ((𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) = ( I ↾ (𝑆 ∩ ∪ 𝐽))) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) = ( I ↾ (𝑆 ∩ ∪ 𝐽)) |
8 | resthauslem.1 | . . . . . . . 8 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) | |
9 | 8 | adantr 473 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ Top) |
10 | eqid 2800 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
11 | 10 | toptopon 21049 | . . . . . . 7 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
12 | 9, 11 | sylib 210 | . . . . . 6 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
13 | idcn 21389 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → ( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽)) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽)) |
15 | 10 | cnrest 21417 | . . . . 5 ⊢ ((( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽) ∧ (𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽) → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
16 | 14, 5, 15 | sylancl 581 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
17 | 7, 16 | syl5eqelr 2884 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
18 | 10 | restin 21298 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) = (𝐽 ↾t (𝑆 ∩ ∪ 𝐽))) |
19 | 18 | oveq1d 6894 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ((𝐽 ↾t 𝑆) Cn 𝐽) = ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
20 | 17, 19 | eleqtrrd 2882 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) |
21 | resthauslem.2 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽) ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) → (𝐽 ↾t 𝑆) ∈ 𝐴) | |
22 | 1, 4, 20, 21 | syl3anc 1491 | 1 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∩ cin 3769 ⊆ wss 3770 ∪ cuni 4629 I cid 5220 ↾ cres 5315 –1-1→wf1 6099 –1-1-onto→wf1o 6101 ‘cfv 6102 (class class class)co 6879 ↾t crest 16395 Topctop 21025 TopOnctopon 21042 Cn ccn 21356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-oadd 7804 df-er 7983 df-map 8098 df-en 8197 df-fin 8200 df-fi 8560 df-rest 16397 df-topgen 16418 df-top 21026 df-topon 21043 df-bases 21078 df-cn 21359 |
This theorem is referenced by: restt0 21498 restt1 21499 resthaus 21500 |
Copyright terms: Public domain | W3C validator |