![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resthauslem | Structured version Visualization version GIF version |
Description: Lemma for resthaus 23392 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
resthauslem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
resthauslem.2 | ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽) ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
Ref | Expression |
---|---|
resthauslem | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ 𝐴) | |
2 | f1oi 6887 | . . 3 ⊢ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1-onto→(𝑆 ∩ ∪ 𝐽) | |
3 | f1of1 6848 | . . 3 ⊢ (( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1-onto→(𝑆 ∩ ∪ 𝐽) → ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽)) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽)) |
5 | inss2 4246 | . . . . 5 ⊢ (𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
6 | resabs1 6027 | . . . . 5 ⊢ ((𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) = ( I ↾ (𝑆 ∩ ∪ 𝐽))) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) = ( I ↾ (𝑆 ∩ ∪ 𝐽)) |
8 | resthauslem.1 | . . . . . . . 8 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) | |
9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ Top) |
10 | toptopon2 22940 | . . . . . . 7 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
11 | 9, 10 | sylib 218 | . . . . . 6 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
12 | idcn 23281 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → ( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽)) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽)) |
14 | eqid 2735 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
15 | 14 | cnrest 23309 | . . . . 5 ⊢ ((( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽) ∧ (𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽) → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
16 | 13, 5, 15 | sylancl 586 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
17 | 7, 16 | eqeltrrid 2844 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
18 | 14 | restin 23190 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) = (𝐽 ↾t (𝑆 ∩ ∪ 𝐽))) |
19 | 18 | oveq1d 7446 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ((𝐽 ↾t 𝑆) Cn 𝐽) = ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
20 | 17, 19 | eleqtrrd 2842 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) |
21 | resthauslem.2 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽) ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) → (𝐽 ↾t 𝑆) ∈ 𝐴) | |
22 | 1, 4, 20, 21 | syl3anc 1370 | 1 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 ∪ cuni 4912 I cid 5582 ↾ cres 5691 –1-1→wf1 6560 –1-1-onto→wf1o 6562 ‘cfv 6563 (class class class)co 7431 ↾t crest 17467 Topctop 22915 TopOnctopon 22932 Cn ccn 23248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-map 8867 df-en 8985 df-fin 8988 df-fi 9449 df-rest 17469 df-topgen 17490 df-top 22916 df-topon 22933 df-bases 22969 df-cn 23251 |
This theorem is referenced by: restt0 23390 restt1 23391 resthaus 23392 |
Copyright terms: Public domain | W3C validator |