| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resthauslem | Structured version Visualization version GIF version | ||
| Description: Lemma for resthaus 23253 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| resthauslem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
| resthauslem.2 | ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽) ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
| Ref | Expression |
|---|---|
| resthauslem | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ 𝐴) | |
| 2 | f1oi 6802 | . . 3 ⊢ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1-onto→(𝑆 ∩ ∪ 𝐽) | |
| 3 | f1of1 6763 | . . 3 ⊢ (( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1-onto→(𝑆 ∩ ∪ 𝐽) → ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽)) | |
| 4 | 2, 3 | mp1i 13 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽)) |
| 5 | inss2 4189 | . . . . 5 ⊢ (𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
| 6 | resabs1 5957 | . . . . 5 ⊢ ((𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) = ( I ↾ (𝑆 ∩ ∪ 𝐽))) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) = ( I ↾ (𝑆 ∩ ∪ 𝐽)) |
| 8 | resthauslem.1 | . . . . . . . 8 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) | |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ Top) |
| 10 | toptopon2 22803 | . . . . . . 7 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 11 | 9, 10 | sylib 218 | . . . . . 6 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 12 | idcn 23142 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → ( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽)) | |
| 13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽)) |
| 14 | eqid 2729 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 15 | 14 | cnrest 23170 | . . . . 5 ⊢ ((( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽) ∧ (𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽) → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
| 16 | 13, 5, 15 | sylancl 586 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
| 17 | 7, 16 | eqeltrrid 2833 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
| 18 | 14 | restin 23051 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) = (𝐽 ↾t (𝑆 ∩ ∪ 𝐽))) |
| 19 | 18 | oveq1d 7364 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ((𝐽 ↾t 𝑆) Cn 𝐽) = ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
| 20 | 17, 19 | eleqtrrd 2831 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) |
| 21 | resthauslem.2 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽) ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) → (𝐽 ↾t 𝑆) ∈ 𝐴) | |
| 22 | 1, 4, 20, 21 | syl3anc 1373 | 1 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ⊆ wss 3903 ∪ cuni 4858 I cid 5513 ↾ cres 5621 –1-1→wf1 6479 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 ↾t crest 17324 Topctop 22778 TopOnctopon 22795 Cn ccn 23109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-map 8755 df-en 8873 df-fin 8876 df-fi 9301 df-rest 17326 df-topgen 17347 df-top 22779 df-topon 22796 df-bases 22831 df-cn 23112 |
| This theorem is referenced by: restt0 23251 restt1 23252 resthaus 23253 |
| Copyright terms: Public domain | W3C validator |