MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resthauslem Structured version   Visualization version   GIF version

Theorem resthauslem 23328
Description: Lemma for resthaus 23333 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
resthauslem.1 (𝐽𝐴𝐽 ∈ Top)
resthauslem.2 ((𝐽𝐴 ∧ ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽) ∧ ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽)) → (𝐽t 𝑆) ∈ 𝐴)
Assertion
Ref Expression
resthauslem ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) ∈ 𝐴)

Proof of Theorem resthauslem
StepHypRef Expression
1 simpl 481 . 2 ((𝐽𝐴𝑆𝑉) → 𝐽𝐴)
2 f1oi 6876 . . 3 ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1-onto→(𝑆 𝐽)
3 f1of1 6837 . . 3 (( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1-onto→(𝑆 𝐽) → ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽))
42, 3mp1i 13 . 2 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽))
5 inss2 4228 . . . . 5 (𝑆 𝐽) ⊆ 𝐽
6 resabs1 6012 . . . . 5 ((𝑆 𝐽) ⊆ 𝐽 → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) = ( I ↾ (𝑆 𝐽)))
75, 6ax-mp 5 . . . 4 (( I ↾ 𝐽) ↾ (𝑆 𝐽)) = ( I ↾ (𝑆 𝐽))
8 resthauslem.1 . . . . . . . 8 (𝐽𝐴𝐽 ∈ Top)
98adantr 479 . . . . . . 7 ((𝐽𝐴𝑆𝑉) → 𝐽 ∈ Top)
10 toptopon2 22881 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
119, 10sylib 217 . . . . . 6 ((𝐽𝐴𝑆𝑉) → 𝐽 ∈ (TopOn‘ 𝐽))
12 idcn 23222 . . . . . 6 (𝐽 ∈ (TopOn‘ 𝐽) → ( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽))
1311, 12syl 17 . . . . 5 ((𝐽𝐴𝑆𝑉) → ( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽))
14 eqid 2725 . . . . . 6 𝐽 = 𝐽
1514cnrest 23250 . . . . 5 ((( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽) ∧ (𝑆 𝐽) ⊆ 𝐽) → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
1613, 5, 15sylancl 584 . . . 4 ((𝐽𝐴𝑆𝑉) → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
177, 16eqeltrrid 2830 . . 3 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
1814restin 23131 . . . 4 ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) = (𝐽t (𝑆 𝐽)))
1918oveq1d 7434 . . 3 ((𝐽𝐴𝑆𝑉) → ((𝐽t 𝑆) Cn 𝐽) = ((𝐽t (𝑆 𝐽)) Cn 𝐽))
2017, 19eleqtrrd 2828 . 2 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽))
21 resthauslem.2 . 2 ((𝐽𝐴 ∧ ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽) ∧ ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽)) → (𝐽t 𝑆) ∈ 𝐴)
221, 4, 20, 21syl3anc 1368 1 ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cin 3943  wss 3944   cuni 4909   I cid 5575  cres 5680  1-1wf1 6546  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  t crest 17421  Topctop 22856  TopOnctopon 22873   Cn ccn 23189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-map 8847  df-en 8965  df-fin 8968  df-fi 9441  df-rest 17423  df-topgen 17444  df-top 22857  df-topon 22874  df-bases 22910  df-cn 23192
This theorem is referenced by:  restt0  23331  restt1  23332  resthaus  23333
  Copyright terms: Public domain W3C validator