Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resthauslem Structured version   Visualization version   GIF version

Theorem resthauslem 21974
 Description: Lemma for resthaus 21979 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
resthauslem.1 (𝐽𝐴𝐽 ∈ Top)
resthauslem.2 ((𝐽𝐴 ∧ ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽) ∧ ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽)) → (𝐽t 𝑆) ∈ 𝐴)
Assertion
Ref Expression
resthauslem ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) ∈ 𝐴)

Proof of Theorem resthauslem
StepHypRef Expression
1 simpl 485 . 2 ((𝐽𝐴𝑆𝑉) → 𝐽𝐴)
2 f1oi 6655 . . 3 ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1-onto→(𝑆 𝐽)
3 f1of1 6617 . . 3 (( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1-onto→(𝑆 𝐽) → ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽))
42, 3mp1i 13 . 2 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽))
5 inss2 4209 . . . . 5 (𝑆 𝐽) ⊆ 𝐽
6 resabs1 5886 . . . . 5 ((𝑆 𝐽) ⊆ 𝐽 → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) = ( I ↾ (𝑆 𝐽)))
75, 6ax-mp 5 . . . 4 (( I ↾ 𝐽) ↾ (𝑆 𝐽)) = ( I ↾ (𝑆 𝐽))
8 resthauslem.1 . . . . . . . 8 (𝐽𝐴𝐽 ∈ Top)
98adantr 483 . . . . . . 7 ((𝐽𝐴𝑆𝑉) → 𝐽 ∈ Top)
10 toptopon2 21529 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
119, 10sylib 220 . . . . . 6 ((𝐽𝐴𝑆𝑉) → 𝐽 ∈ (TopOn‘ 𝐽))
12 idcn 21868 . . . . . 6 (𝐽 ∈ (TopOn‘ 𝐽) → ( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽))
1311, 12syl 17 . . . . 5 ((𝐽𝐴𝑆𝑉) → ( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽))
14 eqid 2824 . . . . . 6 𝐽 = 𝐽
1514cnrest 21896 . . . . 5 ((( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽) ∧ (𝑆 𝐽) ⊆ 𝐽) → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
1613, 5, 15sylancl 588 . . . 4 ((𝐽𝐴𝑆𝑉) → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
177, 16eqeltrrid 2921 . . 3 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
1814restin 21777 . . . 4 ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) = (𝐽t (𝑆 𝐽)))
1918oveq1d 7174 . . 3 ((𝐽𝐴𝑆𝑉) → ((𝐽t 𝑆) Cn 𝐽) = ((𝐽t (𝑆 𝐽)) Cn 𝐽))
2017, 19eleqtrrd 2919 . 2 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽))
21 resthauslem.2 . 2 ((𝐽𝐴 ∧ ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽) ∧ ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽)) → (𝐽t 𝑆) ∈ 𝐴)
221, 4, 20, 21syl3anc 1367 1 ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) ∈ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1536   ∈ wcel 2113   ∩ cin 3938   ⊆ wss 3939  ∪ cuni 4841   I cid 5462   ↾ cres 5560  –1-1→wf1 6355  –1-1-onto→wf1o 6357  ‘cfv 6358  (class class class)co 7159   ↾t crest 16697  Topctop 21504  TopOnctopon 21521   Cn ccn 21835 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-fin 8516  df-fi 8878  df-rest 16699  df-topgen 16720  df-top 21505  df-topon 21522  df-bases 21557  df-cn 21838 This theorem is referenced by:  restt0  21977  restt1  21978  resthaus  21979
 Copyright terms: Public domain W3C validator