Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resthauslem | Structured version Visualization version GIF version |
Description: Lemma for resthaus 22519 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
resthauslem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
resthauslem.2 | ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽) ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
Ref | Expression |
---|---|
resthauslem | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ 𝐴) | |
2 | f1oi 6754 | . . 3 ⊢ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1-onto→(𝑆 ∩ ∪ 𝐽) | |
3 | f1of1 6715 | . . 3 ⊢ (( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1-onto→(𝑆 ∩ ∪ 𝐽) → ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽)) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽)) |
5 | inss2 4163 | . . . . 5 ⊢ (𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 | |
6 | resabs1 5921 | . . . . 5 ⊢ ((𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽 → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) = ( I ↾ (𝑆 ∩ ∪ 𝐽))) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) = ( I ↾ (𝑆 ∩ ∪ 𝐽)) |
8 | resthauslem.1 | . . . . . . . 8 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) | |
9 | 8 | adantr 481 | . . . . . . 7 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ Top) |
10 | toptopon2 22067 | . . . . . . 7 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
11 | 9, 10 | sylib 217 | . . . . . 6 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
12 | idcn 22408 | . . . . . 6 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → ( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽)) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽)) |
14 | eqid 2738 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
15 | 14 | cnrest 22436 | . . . . 5 ⊢ ((( I ↾ ∪ 𝐽) ∈ (𝐽 Cn 𝐽) ∧ (𝑆 ∩ ∪ 𝐽) ⊆ ∪ 𝐽) → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
16 | 13, 5, 15 | sylancl 586 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (( I ↾ ∪ 𝐽) ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
17 | 7, 16 | eqeltrrid 2844 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
18 | 14 | restin 22317 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) = (𝐽 ↾t (𝑆 ∩ ∪ 𝐽))) |
19 | 18 | oveq1d 7290 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ((𝐽 ↾t 𝑆) Cn 𝐽) = ((𝐽 ↾t (𝑆 ∩ ∪ 𝐽)) Cn 𝐽)) |
20 | 17, 19 | eleqtrrd 2842 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) |
21 | resthauslem.2 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)):(𝑆 ∩ ∪ 𝐽)–1-1→(𝑆 ∩ ∪ 𝐽) ∧ ( I ↾ (𝑆 ∩ ∪ 𝐽)) ∈ ((𝐽 ↾t 𝑆) Cn 𝐽)) → (𝐽 ↾t 𝑆) ∈ 𝐴) | |
22 | 1, 4, 20, 21 | syl3anc 1370 | 1 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝑆 ∈ 𝑉) → (𝐽 ↾t 𝑆) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 ∪ cuni 4839 I cid 5488 ↾ cres 5591 –1-1→wf1 6430 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 ↾t crest 17131 Topctop 22042 TopOnctopon 22059 Cn ccn 22375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-map 8617 df-en 8734 df-fin 8737 df-fi 9170 df-rest 17133 df-topgen 17154 df-top 22043 df-topon 22060 df-bases 22096 df-cn 22378 |
This theorem is referenced by: restt0 22517 restt1 22518 resthaus 22519 |
Copyright terms: Public domain | W3C validator |